Download FREE Study Package from www.TekoClasses.com & Learn on Video www.MathsBySuhag.com Phone : 0 903 903 7779, 98930 58881 Whats App 9009 260 559 SEQUENCE & SERIES PART 2 OF 2

ASSERTION & REASON FOR SEQUANCE AND SERIES

Some questions (Assertion-Reason type) are given below. Each question contains Statement - 1 (Assertion) and Statement - 2 (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct. So select the correct choice:

- (A) Statement 1 is True, Statement 2 is True; Statement 2 is a correct explanation for Statement 1.
- (B) Statement 1 is True, Statement 2 is True; Statement 2 is NOT a correct explanation for Statement 1.
- (C) Statement 1 is True, Statement 2 is False.
- (D) **Statement 1** is False, **Statement 2** is True.

549. Statement-1 : In the expression $(x + 1) (x + 2) \dots (x + 50)$, coefficient of x^{49} is equal to 1275.

Statement-2:
$$\sum_{r=i}^{n} r = \frac{n(n+1)}{2}, n \in \mathbb{N}.$$

550. Let a, b, c, d are four positive number

Statement-1 :
$$\left(\frac{a}{b} + \frac{b}{c}\right)\left(\frac{c}{d} + \frac{d}{e}\right) \ge 4\sqrt{\frac{a}{e}}$$
 Statement-2 : $\frac{b}{a} + \frac{c}{b} + \frac{d}{c} + \frac{e}{d} + \frac{a}{e} \ge 5$.

551. Let a, b, c and d be distinct positive real numbers in H.P.

> Statement-1 : a + d > b + c

Statement-2 : $\frac{1}{a} + \frac{1}{d} = \frac{1}{b} + \frac{1}{c}$

552. Let a, $r \in \mathbb{R} - \{0, 1, -1\}$ and n be an even number. : a. ar. $ar^2 \dots ar^{n-1} = (a^2 r^{n-1})^{n/2}$ Statement-1

: Product of k^{th} term from the beginning and from the end in a G.P. is independent of k. Statement-2

553. : Let p, q, $r \in R^+$ and $27pqr \ge (p + q + r)^3$ and 3p + 4q + 5r = 12, then $p^3 + q^4 + r^5$ is equal to 4. Statement-1

: If A,G, and H are A.M., G.M., and H.M. of positive numbers $a_1, a_2, a_3, \ldots, a_n$ then $H \le G \le A$. Statement-2 : The sum of series n.n + (n - 1)(n + 1) + (n - 2)(n + 2) + ... 1. (2n - 1) is 554. Statement-1 n(n+1)(4n+1).

: The sum of any series S_n can be given as, $S_n = \sum_{r=1}^{n} T_r$, where T_r is the general ten of the Statement-2

series.

558.

555. : P is a point (a, b, c). Let A, B, C be images of P in yz, zx and xy plane respectively, then Statement-1 equati

on of plane must be
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$
.

: The direction ratio of the line joining origin and point (x, y, z) must be x, y, z. Statement-2

556. : If A, B, C, D be the vertices of a rectangle in order. The position vector of A, B, C, D be a, b, Statement-1 c, d respectively, then $\vec{a} \cdot \vec{c} = b \cdot d$.

: In a triangle ABC, let O, G and H be the circumcentre, centroid and orthocentre of the triangle Statement-2 ABC, then OA + OB + OC = OH.

557. Statement-1:
$$1 + 37 + 13 + \dots$$
 upto n terms = $\frac{n(n+2)}{3}$ Statement-2: $\frac{a^{n+1} + b^{n+1}}{a^n + b^n}$ is HM of a & b if n = $-\frac{1}{2}$

Statement-1: 1111 1 (up to 91 terms) is a prime number
Statement-2: If
$$\frac{b+c-a}{a}$$
, $\frac{c+a-b}{b}$, $\frac{a+b-c}{c}$ are in A.P., then $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ are also in A.P.

Download FREE Study Package from <u>www.TekoClasses.com</u> & Learn on Video <u>www.MathsBySuhaq.com</u> Phone : 0 903 903 7779, 98930 58881 WhatsApp 9009 260 559 SEQUENCE & SERIES PART 2 OF 2

559. Statement-1: For a infinite G.P. whose first term is 'a' and common ratio is r, then $S_{\infty} = \frac{a}{1-r}$ where $|r| \ge 1$

Statement-2: A, G, H are arithmetic mean, Geometric mean and harmonic mean of two positive real numbers a & b. Then A, G, H are in G.P.

560. Statement-1: 11 11 1 (up to 91 terms) is a prime number.

Statement-1: If
$$\frac{b+c-a}{a}$$
, $\frac{c+a-b}{b}$, $\frac{a+b-c}{c}$ Are in A.P., then $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ are also in A.P.

561. Statement-1: The sum of all the products of the first n positive integers taken two at a time is $\frac{1}{24}$ (n - 1) (n + 1)

n(3n + 2) Statement-2:
$$\sum_{i \le i < j \le n} a_i a_j = (a_1 + a_2 + ... + a_n)^2 - (a_1^2 + a_2^2 + a_n^2)$$

- **562. Statement-1:** Let the positive numbers a, b, c, d, e be in AP, then abcd, abce, abde, acde, bcde are in HP **Statement-2:** If each term of an A.P. is divided by the same number k, the resulting sequence is also
- 563. Statement-1: If a, b, c are in G.P., $\frac{1}{\log a}$, $\frac{1}{\log b}$, $\frac{1}{\log c}$ are in H.P.

Statement-2: When we take logarithm of the terms in G.P., they occur in A.P.

- **564.** Statement-1: If 3p + 4q + 5r = 12 then $p^3q^4r^5 \ge 1$ here p, q, $r \in \mathbb{R}^+$ S-2: If the quantities are positive then weighted arithmetic mean is greater than or equal to geometric mean.
- 565. Statement-1: S = 1/4 1/2 + 1 2 + 2² = $\frac{1/4}{1+2} = \frac{1}{12}$

S-2: Sum of n terms of a G.P. with first term as 'a' and common ratio as r in given by $a\left(\frac{r^n-1}{r-1}\right)$, |r| > 1.

- **566.** Statement-1: $-4 + 2 1 + 1/2 1/4 + ... \infty$ is a geometric sequence. Statement-2: Terms of a sequence are positive numebrs.
- 567. Statement-1: The sum of the infinite A.P. $1 + 2 + 2^2 + 2^3 + \dots + \dots$ is given by $\frac{a}{1-r} = \frac{1}{1-2} = -1$

Statement-2: The sum of an infinite G.P. is given by $\frac{a}{1-r}$ where |r| < 1 a is first term and r is common ratio.

568. Statement-1: If $a_1, a_2, a_3, \dots, a_n$ are positive real numbers whose product is a fixed number C, then the minimum value of $a_1 + a_2 + \dots + a_{n-1} + 2a_n$ is $n(2c)^{1/n}$.

Statement-2: If
$$a_1, a_2, a_3, \dots, a_n \in \mathbb{R}^+$$
. then $\frac{a_1 + a_2 + a_3 + \dots + a_n}{n} \ge (a_1 a_2 a_3 \dots a_n)^{1/n}$

- 569. Statement-1: If $a(b c) x^2 + b (c a) x + c(a b) = 0$ has equal roots, then a, b, c are in H.P. Statement-2: Sum of the roots and product of the root are equal
- 570. Statement-1: $\lim_{n\to\infty} \frac{x^n}{n!} = 0$ for every n > 0

Statement-2: Every sequence whose nth term contains n! in the denominator converges to zero.

- 571. Statement-1: Sum of an infinite geometric series with common ratio more than one is not possible to find out.
- S-2: The geometric series (Infinite) with common ratio more than one becomes diverging and sum is not fixed.
 Statement-1: If arithmetic mean of two numbers is 5/2, Geometric mean of the numbers is 2 then harmonic mean will be 8/5.

Statement-2: for a group of numbers $(GM)^2 = (AM) \times (HM)$.

- 573. Statement-1: If a, b, c, d be four distinct positive quantities in H.P. then a + d > b + c, ad > bc. Statement-2: A.M. > G.M. > H.M.
- **574. Statement-1:** The sum of n arithmetic means between two given numbers is n times the single arithmetic mean between them.
- **Statement-2:** nth term of the A.P. with first term a and common difference d is a + (n + 1)d. **575. Statement-1:** If a + b + c = 3 a > 0, b > 0, c > 0, then greatest value of $a^2b^3c^4 = 3^{10}2^4 - 77$.

$$a_1 + a_2 + a_3 + \dots + a_n$$

Statement-2: If
$$a_i > 0$$
 $i = 1, 2, 3, ..., n$, then $\frac{a_1 + a_2 + a_3 + ..., + a_n}{n} \ge (a_1 a_2 ..., a_n)^{1/n}$

Download FREE Study Package from <u>www.TekoClasses.com</u> & Learn on Video <u>www.MathsBySuhag.com</u> Phone : 0 903 903 7779, 98930 58881 WhatsApp 9009 260 559 SEQUENCE & SERIES PART 2 OF 2

ANSWER SHEET

549. A 550. B 551. B 552. B 553. D 554. D 555. B 556. B 557. C 558. D 559. D 560. D 561. A 562. A 563. A 564. D 565. D 566. D 567. D568. A 569. C 570. C 571. A 572. C 573. A 574. C 575. A

IMP QUESTION FROM COMPETETIVE EXAMS

- 1. If the angles of a quadrilateral are in A.P. whose common difference is 10° , then the angles of the quadrilateral are(a) $65^{\circ}, 85^{\circ}, 95^{\circ}, 105^{\circ}$ (b) $75^{\circ}, 85^{\circ}, 95^{\circ}, 105^{\circ}$ (b) $65^{\circ}, 75^{\circ}, 85^{\circ}, 95^{\circ}$ (d) $65^{\circ}, 95^{\circ}, 105^{\circ}, 115^{\circ}$
- **2.** If the sum of first *n* terms of an A.P. be equal to the sum of its first *m* terms, $(m \neq n)$, then the sum of its first (m + n) terms will be [MP PET 1984]
 - (a) o (b) n (c) m (d) m+n
- **3.** If p, q, r are in A.P. and are positive, the roots of the quadratic equation $px^2 + qx + r = 0$ are all real for **[IIT 1995]**

(a)
$$\left|\frac{r}{p} - 7\right| \ge 4\sqrt{3}$$
 (b) $\left|\frac{p}{r} - 7\right| < 4\sqrt{3}$ (c) All p and r (d) No p and r

4. The sums of *n* terms of three A.P.'s whose first term is 1 and common differences are 1, 2, 3 are S_1 , S_2 , S_3 respectively. The true relation is

(a)
$$S_1 + S_3 = S_2$$
 (b) $S_1 + S_3 = 2S_2$ (c) $S_1 + S_2 = 2S_3$ (d) $S_1 + S_2 = S_3$

5. The value of *x* satisfying

 $\log_a x + \log_{\sqrt{a}} x + \log_{3\sqrt{a}} x + \dots \log_{a\sqrt{a}} x = \frac{a+1}{2}$ will be

 $x = a^{1/a}$ (b) $x = a^{a}$ $x = a^{-1/a}$ (d) (a) x = a(c) 6. Jairam purchased a house in Rs. 15000 and paid Rs. 5000 at once. Rest money he promised to pay in annual installment of Rs. 1000 with 10% per annum interest. How much money is to be paid by Jairam [UPSEAT 1999] (a) Rs. 21555 (b) Rs. 20475 (c) Rs. 20500 (d) Rs. 20700

7. Let S_1, S_2, \dots be squares such that for each $n \ge 1$, the length of a side of S_n equals the length of a diagonal of S_{n+1} . If the length of a side of S_1 is 10 cm, then for which of the following values of n is the area of S_n less then 1 sq cm(a) 7 (b) 8 (c) 9 (d) 10

- 8. If $S_1, S_2, S_3, \dots, S_m$ are the sums of *n* terms of *m* A.P.'s whose first terms are 1, 2, 3, ..., *m* and common differences are 1, 3, 5, ..., 2m-1 respectively, then $S_1 + S_2 + S_3 + \dots + S_m =$
 - (a) $\frac{1}{2}mn(mn+1)$ (b) mn(m+1) (c) $\frac{1}{4}mn(mn-1)$ (d) None of the above

9. If $a_1, a_2, a_3, \dots, a_{24}$ are in arithmetic progression and $a_1 + a_5 + a_{10} + a_{15} + a_{20} + a_{24} = 225$, then $a_1 + a_2 + a_3 + \dots + a_{23} + a_{24} =$ [MP PET 1999; AMU 1997]

(a) 909 (b) 75 (c) 750 (d) 900

10. If the roots of the equation $x^3 - 12x^2 + 39x - 28 = 0$ are in A.P., then their common difference will be

(a) ± 1 (b) ± 2 (c) ± 3 (4) ± 4 [UPSEAT 1994, 99, 2001; RPET 2001] **11.** If the first term of a G.P. a_1, a_2, a_3, \dots is unity such that $4a_2 + 5a_3$ is least, then the common ratio of G.P. is

(a)
$$-\frac{2}{5}$$
 (b) $-\frac{3}{5}$ (c) $\frac{2}{5}$ (d) None of these

- **12.** If the sum of the *n* terms of G.P. is *S* product is *P* and sum of their inverse is *R*, than P^2 is equal to
 - (a) $\frac{R}{S}$ (b) $\frac{S}{R}$ (c) $\left(\frac{R}{S}\right)^n$ (d) $\left(\frac{S}{R}\right)^n$ [IIT 1966; Roorkee 1981]

13. Let n(>1) be a positive integer, then the largest integer *m* such that $(n^m + 1)$ divides $(1 + n + n^2 + \dots + n^{127})$, is (a) 32 (b) 63 (c) 64 (d) 127 [IIT 1995]

Dow Pho	nload FREE Study Pack ne : 0 903 903 7779, 989	age 1 30 58	rom <u>www.TekoCla</u> 3881 WhatsApp 9	asses.com 009 260 5	n & Lea 59 SE	rn on Vi QUENC	ideo <u>ww</u> E & SEF	w.MathsBySuhag.com RIES PART 2 OF 2	
14.	A G.P. consists of an even r places, then the common ra	numb itio wi	er of terms. If the sur ll be equal to	n of all the	terms is	5 times t	he sum o	f the terms occupying odd	
	(a) 2	(b)	3	(c)	4	(d)	5		
15.	If $f(x)$ is a function satisfying	ing f((x+y) = f(x)f(y) for all	$ll x, y \in N$	such that	f(1) = 3	and $\sum_{x=1}^{n}$	f(x) = 120. Then the value	
	of <i>n</i> is		[IIT 19	92]			<i>x</i> -1		
	(a) 4	(b)	5	(c)	6	(d)	None of	these	
16.	If <i>n</i> geometric means betwee	een a	and <i>b</i> be $G_1, G_2,$	G_n and a g	geometri	c mean b	e G, ther	the true relation is	
	(a) $G_1.G_2G_n = G$	(b)	$G_1.G_2.\ldotsG_n = G^{1/n}$						
	(c) $G_1.G_2G_n = G^n$ (d) $G_1.G_2G_n = G^{2/n}$								
17.	α , β are the roots of the equation of the	uation en (<i>a</i> ,	$x^{2} - 3x + a = 0$ and b) = [DCE 20	γ, δ are th 00]	ie roots c	of the equ	ution x^2	$-12x+b=0$. If α , β , γ , δ	
	(a) (3, 12)	(b)	(12, 3)	(c)	(2, 32)	(d)	(4, 16)		
18.	2.357 =		[IIT 1983; RPET 10	95]					
	(a) $\frac{2355}{1001}$	(b)	$\frac{2370}{997}$	(c)	$\frac{2355}{999}$	(d)	None of	these	
19.	If $1 + \cos \alpha + \cos^2 \alpha + \dots \propto$	$1 + \cos \alpha + \cos^2 \alpha + \dots = 2 - \sqrt{2}$, then α , $(0 < \alpha < \pi)$ is					kee 2000	; AMU 2005]	
	(a) $\pi/8$	(b)	$\pi/6$	(c)	π / 4	(d)	$3\pi/4$		
20.	The first term of an infinite	geom	etric progression is x	and its su	m is 5. Tł	nen		[IIT Screening 2004]	
	(a) $0 \le x \le 10$	(b)	0 < <i>x</i> < 10	(c)	-10 < x	< 0	(d)	x > 10	
21.	If a, b, c are in H.P., then the value of $\left(\frac{1}{b} + \frac{1}{c} - \frac{1}{a}\right)\left(\frac{1}{c} + \frac{1}{a} - \frac{1}{b}\right)$, is [MP PET 1998; Pb. CET 2000]						000]		
	(a) $\frac{2}{bc} + \frac{1}{b^2}$	(b)	$\frac{3}{c^2} + \frac{2}{ca}$	(c)	$\frac{3}{b^2} - \frac{2}{ab}$	-	(d)	None of these	
22.	If m is a root of the given e	quatio	$(1-ab)x^2 - (a^2 + b)x^2$	$(x^2)x - (1 + a)$	ab)=0 a	nd <i>m</i> ha	rmonic n	eans are inserted between	
	and b , then the difference between the last and the first of the means equals								
	(a) $b - a$	(b)	ab(b-a)	(c)	a(b-a)	(d)	ab(a-b)		
23.	A boy goes to school from his home at a speed of $x km/hour$ and comes back at a speed of $y km/hour$, then the average speed is given by [DCE 2002]								
	(a) A.M.	(b)	G.M.	(c)	H.M.	(d)	None of	these	
24.	If a, b, c, d be in H.P., then	l							
	(a) $a^2 + c^2 > b^2 + d^2$	(b)	$a^2 + d^2 > b^2 + c^2$	(c)	ac + bd	$>b^{2}+c^{2}$	(d)	$ac + bd > b^2 + d^2$	
25.	If a, b, c are the positive int	tegers	, then $(a+b)(b+c)(c-b)(c-b)(c-b)(c-b)(c-b)(c-b)(c-b)(c-$	<i>⊦a</i>)is	[DCE 20	000]			
	(a) < 8 <i>abc</i>	(b)	> 8 <i>abc</i>	(c)	=8abc	(d)	None of	these	
26.	In a G.P. the sum of three series becomes A.P., then the	numl ne gre	oers is 14, if 1 is add atest number is	ed to first t	wo numł [Roorke	oers and ee 1973]	subtracte	d from third number, the	
	(a) 8	(b)	4	(c)	24	(d)	16		
27.	If a, b, c are in G.P. and lo sides of a triangle which is	og a –	$\log 2b, \log 2b - \log 3c$	and log 3 <i>c</i>	$-\log a$ a	re in A.P	P ., then <i>a</i>	b, c are the length of the	
	(a) Acute angled	(b)	Obtuse angled	(c)	Right an	ngled	(d)	Equilateral	
28.	If $A_1, A_2; G_1, G_2$ and H_1, H	₂ be .	AM's, GM's and HM	's between	n two qua	intities, t	hen the va	alue of $\frac{G_1 G_2}{H_1 H_2}$ is	

Dow Pho	nload FREE Study Pack one : 0 903 903 7779, 989	age from <u>www.TekoC</u> 930 58881 WhatsApp 9	<mark>lasses.co</mark> 9009 260 5	m & Learn on V 559 SEQUENC	′ideo <u>ww</u> CE & SEF	w.MathsBySuhag.com NES PART 2 OF 2		
	(a) $\frac{A_1 + A_2}{H_1 + H_2}$	(b) $\frac{A_1 - A_2}{H_1 + H_2}$	(c)	$\frac{A_1 + A_2}{H_1 - H_2}$	(d)	$\frac{A_1 - A_2}{H_1 - H_2}$		
29.	The harmonic mean of two numbers is 4 and the arithmetic and geometric means satisfy the relation $2A + G^2 = 27$ the numbers are[MNR 1987; UPSEAT 1999, 2000]							
	(a) 6,3	(b) 5,4	(c)	5, -2.5 (d)	-3,1			
30.	If the A.M. of two number numbers are	rs is greater than G.M. of t [RPET 1	he number 988]	s by 2 and the rat	tio of the r	numbers is 4:1, then the		
	(a) 4, 1	(b) 12, 3	(c)	16, 4 (d)	None of	these		
31.	If the A.M. and G.M. of roc	ots of a quadratic equations	are 8 and g	5 respectively, the	n the quad	ratic equation will be		
						[Pb. CET 1990]		
	(a) $x^2 - 16x - 25 = 0$	(b) $x^2 - 8x + 5 = 0$	(c)	$x^2 - 16x + 25 = 0$	0 (d)	$x^2 + 16x - 25 = 0$		
32.	The A.M., H.M. and G.M. b	between two numbers are ¹	$\frac{144}{15}$, 15 and	l 12, but not neces	sarily in th	is order. Then H.M., G.M.		
	and A.M. respectively are							
	(a) 15, 12, $\frac{144}{15}$	(b) $\frac{144}{15}$, 12, 15	(c)	$12, 15, \frac{144}{15}$	(d)	$\frac{144}{15}$, 15, 12		
33.	If a be the arithmetic mean	n of b and c and G_1, G_2 h	oe the two g	eometric means b	etween the	em, then $G_1^3 + G_2^3 =$		
	(a) $G_1 G_2 a$	(b) $2G_1G_2a$	(c)	$3G_1G_2a$ (d)	None of	these		
34 .	Three numbers form a G.P. If the 3^{rd} term is decreased by 64, then the three numbers thus obtained will constitute a A.P. If the second term of this A.P. is decreased by 8, a G.P. will be formed again, then the numbers will be							
	(a) 4, 20, 36	(b) 4, 12, 36	(c)	4, 20, 100	(d)	None of the above		
35.	If $x > 1$, $y > 1$, $z > 1$ are in C	G.P., then $\frac{1}{1 + \ln x}$, $\frac{1}{1 + \ln y}$,	$\frac{1}{1 + \ln z}$	are in [IIT	1998; UPS	SEAT 2001]		
	(a) A.P.	(b) H.P.	(c)	G.P. (d)	None of	these		
36.	<i>a</i> , <i>g</i> , <i>h</i> are arithmetic mean, geometric mean and harmonic mean between two positive numbers <i>x</i> and <i>y</i> respectivel. Then identify the correct statement among the following [Karnataka CET 2001]							
	(a) h is the harmonic mean between a and g			No such relation exists between a, g and h				
	(c) g is the geometric mean between a and h			A is the arithmetic mean between g and h				
3 7•	$2^{\sin\theta} + 2^{\cos\theta}$ is greater than	n [AMU 2						
	(a) $\frac{1}{2}$	(b) $\sqrt{2}$	(c)	$2^{\frac{1}{\sqrt{2}}}$ (d)	$2^{\left(1-\frac{1}{\sqrt{2}}\right)}$			
38.	If a, b, c, d are positive real	I numbers such that $a+b+$	c+d = 2,	then $M = (a + b)(c$	(+d) satis	fies the relation		
						[IIT Screening 2000]		
	(a) $0 < M \le 1$	(b) $1 \le M \le 2$						
	(c) $2 \le M \le 3$	(d) $3 \le M \le 4$						
39.	Suppose a, b, c are in A.P.	and a^2, b^2, c^2 are in G.P. If	f <i>a < b <</i>	c and $a+b+c =$	$\frac{3}{2}$, then the	ne value of <i>a</i> is		
						[IIT Screening 2002]		

(a) $\frac{1}{2\sqrt{2}}$ (b) $\frac{1}{2\sqrt{3}}$ (c) $\frac{1}{2} - \frac{1}{\sqrt{3}}$ (d) $\frac{1}{2} - \frac{1}{\sqrt{2}}$

Download FREE Study Package from <u>www.TekoClasses.com</u> & Learn on Video <u>www.MathsBySuhag.com</u> Phone : 0 903 903 7779, 98930 58881 WhatsApp 9009 260 559 SEQUENCE & SERIES PART 2 OF 2

40. n^{th} term of the series $1 + \frac{4}{5} + \frac{7}{5^2} + \frac{10}{5^3} + \dots$ will be (a) $\frac{3n+1}{5^{n-1}}$ (b) $\frac{3n-1}{5^n}$ (c) $\frac{3n-2}{5^{n-1}}$ (d) $\frac{3n+2}{5^{n-1}}$ **41.** The sum of the series $\frac{1}{1+1^2+1^4} + \frac{2}{1+2^2+2^4} + \frac{3}{1+3^2+3^4} + \dots$ to *n* terms is (a) $\frac{n(n^2+1)}{n^2+n+1}$ (b) $\frac{n(n+1)}{2(n^2+n+1)}$ (c) $\frac{n(n^2-1)}{2(n^2+n+1)}$ (d) None of these **42.** For any odd integer $n \ge 1$, $n^{3} - (n-1)^{3} + \dots + (-1)^{n-1}1^{3} =$ [IIT 1996] **43.** The sum of *n* terms of the series $\frac{1}{1+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{5}} + \frac{1}{\sqrt{5}+\sqrt{7}} + \dots$ is **[UPSEAT 2002]** (b) $\frac{1}{2}\sqrt{2n+1}$ (c) $\sqrt{2n+1}-1$ (d) $\frac{1}{2}(\sqrt{2n+1}-1)$ (a) $\sqrt{2n+1}$ **44.** n^{th} term of the series $\frac{1^3}{1} + \frac{1^3 + 2^3}{1 + 3} + \frac{1^3 + 2^3 + 3^3}{1 + 3 + 5} + \dots$ will be **[Pb. CET 2000]** (a) $n^2 + 2n + 1$ (b) $\frac{n^2 + 2n + 1}{8}$ (c) $\frac{n^2 + 2n + 1}{4}$ (d) $\frac{n^2 - 2n + 1}{4}$ **45.** The sum of the series $\frac{1}{\sqrt{1} + \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{4}} + \dots + \frac{1}{\sqrt{n^2 - 1} + \sqrt{n^2}}$ equals [AMU 2002]

(a)
$$\frac{1}{2}(n-1)^2(2n-1)$$
 (b) $\frac{1}{4}(n-1)^2(2n-1)$ (c) $\frac{1}{2}(n+1)^2(2n-1)$ (d) $\frac{1}{4}(n+1)^2(2n-1)$

(a)
$$\frac{(2n+1)}{\sqrt{n}}$$

(b)
$$\frac{\sqrt{n+1}}{\sqrt{n}+\sqrt{n-1}}$$
 (c) $\frac{(n+\sqrt{n^2-1})}{2\sqrt{n}}$ (d)

n-1

ANSWER

1	b	2	а	3	а	4	b	5	d
6	с	7	b,c,d	8	а	9	d	10	с
11	а	12	d	13	с	14	с	15	а
16	с	17	с	18	с	19	d	20	b
21	C	22	b	23	C	24	C	25	b
26	а	27	b	28	а	29	а	30	с
31	С	32	b	33	b	34	С	35	b
36	C	37	d	38	а	39	d	40	С
41	b	42	d	43	d	44	С	45	d

For 39 Years Que. of IIT-JEE (Advanced) & 15 Years Que. of AIEEE (JEE Main) we have already distributed a book