## विध्न विचारत भीरु जन, नहीं आरग्भे काम, विपति देख छोड़े तुरंत मध्यम मन कर श्याम। पुरुष सिंह संकल्प कर, सहते विपति अनेक, 'बना' न छोड़े ध्येय को, रुुबर राखे टेक।। <br> टचितः मानव धर्म प्रणेता <br> 

## ASSBRTION \& REASON FOR SEQUANCE AND SBRIES

Some questions (Assertion-Reason type) are given below. Each question contains Statement-1 (Assertion) and
Statement - 2 (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct. So select the correct choice:
(A) Statement - $\mathbf{1}$ is True, Statement $\mathbf{- 2}$ is True; Statement $\mathbf{- 2}$ is a correct explanation for Statement $\mathbf{- 1}$.
(B) Statement - $\mathbf{1}$ is True, Statement $\mathbf{- 2}$ is True; Statement - $\mathbf{2}$ is NOT a correct explanation for Statement $\mathbf{- 1}$.
(C) Statement - $\mathbf{1}$ is True, Statement $\mathbf{- 2}$ is False.
(D) Statement $\mathbf{- 1}$ is False, Statement $\mathbf{- 2}$ is True.
549. Statement-1 :In the expression $(x+1)(x+2) \ldots(x+50)$, coefficient of $x^{49}$ is equal to 1275 .

Statement-2 : $\quad \sum_{\mathrm{r}=\mathrm{i}}^{\mathrm{n}} \mathrm{r}=\frac{\mathrm{n}(\mathrm{n}+1)}{2}, \mathrm{n} \in \mathrm{N}$.
550. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are four positive number

Statement-1 $:\left(\frac{a}{b}+\frac{b}{c}\right)\left(\frac{c}{d}+\frac{d}{e}\right) \geq 4 \sqrt{\frac{a}{e}} \quad$ Statement-2 $\quad: \quad \frac{b}{a}+\frac{c}{b}+\frac{d}{c}+\frac{e}{d}+\frac{a}{e} \geq 5$.
551. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d be distinct positive real numbers in H.P.

Statement-1 $: \mathrm{a}+\mathrm{d}>\mathrm{b}+\mathrm{c} \quad$ Statement-2 $: \quad \frac{1}{a}+\frac{1}{d}=\frac{1}{b}+\frac{1}{c}$
552. Let $\mathrm{a}, \mathrm{r} \in \mathrm{R}-\{0,1,-1\}$ and n be an even number.

Statement-1 : a. ar. $\mathrm{ar}^{2} \ldots \mathrm{ar}^{\mathrm{n}-1}=\left(\mathrm{a}^{2} \mathrm{r}^{\mathrm{n}-1}\right)^{\mathrm{n} / 2}$.
Statement-2 : Product of $\mathrm{k}^{\text {th }}$ term from the beginning and from the end in a G.P. is independent of k .
553. Statement-1 : Let $p, q, r \in R^{+}$and $27 p q r \geq(p+q+r)^{3}$ and $3 p+4 q+5 r=12$, then $p^{3}+q^{4}+r^{5}$ is equal to 4 .

Statement-2 : If A,G, and H are A.M., G.M., and H.M. of positive numbers $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ then $H \leq G \leq A$.
554. Statement-1 : The sum of series $n . n+(n-1)(n+1)+(n-2)(n+2)+\ldots 1 .(2 n-1)$ is $\frac{1}{6} n(n+1)(4 n+1)$.

Statement-2 : The sum of any series $S_{n}$ can be given as, $S_{n}=\sum_{r=1}^{n} T_{r}$, where $T_{r}$ is the general ten of the series.
555. Statement-1 : $P$ is a point $(a, b, c)$. Let $A, B, C$ be images of $P$ in $y z, z x$ and $x y$ plane respectively, then equation of plane must be $\frac{x}{a}+\frac{y}{b}+\frac{Z}{c}=1$.
Statement-2 : The direction ratio of the line joining origin and point ( $x, y, z$ ) must be $x, y, z$.
556. Statement-1 : If A, B, C, D be the vertices of a rectangle in order. The position vector of A, B, C, D be a, b, c, d respectively, then $\overrightarrow{\mathrm{a}} . \overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{d}}$.
Statement-2 : In a triangle ABC , let $\mathrm{O}, \mathrm{G}$ and H be the circumcentre, centroid and orthocentre of the triangle ABC , then $\mathrm{OA}+\mathrm{OB}+\mathrm{OC}=\mathrm{OH}$.
557. Statement-1: $1+37+13+\ldots$ upto $n$ terms $=\frac{n(n+2)}{3}$ Statement-2: $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}$ is HM of a \& b if $n=-\frac{1}{2}$
558. Statement-1: $1111 \ldots .1$ (up to 91 terms) is a prime number

Statement-2: If $\frac{\mathrm{b}+\mathrm{c}-\mathrm{a}}{\mathrm{a}}, \frac{\mathrm{c}+\mathrm{a}-\mathrm{b}}{\mathrm{b}}, \frac{\mathrm{a}+\mathrm{b}-\mathrm{c}}{\mathrm{c}}$ are in A.P., then $\frac{1}{\mathrm{a}}, \frac{1}{\mathrm{~b}}, \frac{1}{\mathrm{c}}$ are also in A.P.
559. Statement-1: For a infinite G.P. whose first term is 'a' and common ratio is $r$, then $S_{\infty}=\frac{a}{1-r}$ where $|r| \geq 1$

Statement-2: A, G, H are arithmetic mean, Geometric mean and harmonic mean of two positive real numbers a \& b. Then A, G, H are in G.P.
560. Statement-1: $1111 \ldots \ldots .1$ (up to 91 terms) is a prime number.

Statement-2: If $\frac{\mathrm{b}+\mathrm{c}-\mathrm{a}}{\mathrm{a}}, \frac{\mathrm{c}+\mathrm{a}-\mathrm{b}}{\mathrm{b}}, \frac{\mathrm{a}+\mathrm{b}-\mathrm{c}}{\mathrm{c}}$ Are in A.P., then $\frac{1}{\mathrm{a}}, \frac{1}{\mathrm{~b}}, \frac{1}{\mathrm{c}}$ are also in A.P.
561. Statement-1: The sum of all the products of the first $n$ positive integers taken two at a time is $\frac{1}{24}(n-1)(n+1)$
$n(3 n+2) \quad$ Statement-2: $\sum_{i \leq i<j \leq n} a_{i} a_{j}=\left(a_{1}+a_{2}+\ldots+a_{n}\right)^{2}-\left(a_{1}{ }^{2}+a_{2}{ }^{2}+a_{n}{ }^{2}\right)$
562. Statement-1: Let the positive numbers $a, b, c, d$, e be in AP, then abcd, abce, abde, acde, bcde are in HP

Statement-2: If each term of an A.P. is divided by the same number k , the resulting sequence is also
563. Statement-1: If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in G.P., $\frac{1}{\log \mathrm{a}}, \frac{1}{\log \mathrm{~b}}, \frac{1}{\log \mathrm{c}}$ are in H.P.

Statement-2: When we take logarithm of the terms in G.P., they occur in A.P.
564. Statement-1: If $3 p+4 q+5 r=12$ then $p^{3} q^{4} r^{5} \geq 1$ here $p, q, r \in R^{+}$

S-2: If the quantities are positive then weighted arithmetic mean is greater than or equal to geometric mean.
565. Statement-1: $S=1 / 4-1 / 2+1-2+2^{2}-\ldots .=\frac{1 / 4}{1+2}=\frac{1}{12}$

S-2: Sum of $n$ terms of a G.P. with first term as ' $a$ ' and common ratio as $r$ in given by $a\left(\frac{r^{n}-1}{r-1}\right)$, $|r|>1$.
566. Statement-1: $-4+2-1+1 / 2-1 / 4+\ldots \infty$ is a geometric sequence.

Statement-2: Terms of a sequence are positive numebrs.
567. Statement-1: The sum of the infinite A.P. $1+2+2^{2}+2^{3}+\ldots .+\ldots$. is given by $\frac{a}{1-r}=\frac{1}{1-2}=-1$

Statement-2: The sum of an infinite G.P. is given by $\frac{a}{1-r}$ where $|r|<1$ a is first term and $r$ is common ratio.
568. Statement-1: If $a_{1}, a_{2}, a_{3}, \ldots . . a_{n}$ are positive real numbers whose product is $a$ fixed number $C$, then the minimum value of $a_{1}+a_{2}+\ldots . .+a_{n-1}+2 a_{n}$ is $n(2 c)^{1 / n}$.
Statement-2: If $a_{1}, a_{2}, a_{3}, \ldots . . a_{n} \in R^{+}$. then $\frac{a_{1}+a_{2}+a_{3}+\ldots . .+a_{n}}{n} \geq\left(a_{1} a_{2} a_{3} \ldots . a_{n}\right)^{1 / n}$
569. Statement-1: If $a(b-c) x^{2}+b(c-a) x+c(a-b)=0$ has equal roots, then $a, b, c$ are in H.P.

Statement-2: Sum of the roots and product of the root are equal
570. Statement-1: $\lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=0$ for every $n>0$

Statement-2: Every sequence whose nth term contains n! in the denominator converges to zero.
571. Statement-1: Sum of an infinite geometric series with common ratio more than one is not possible to find out.

S-2: The geometric series (Infinite) with common ratio more than one becomes diverging and sum is not fixed.
572. Statement-1: If arithmetic mean of two numbers is $5 / 2$, Geometric mean of the numbers is 2 then harmonic mean will be $8 / 5$.
Statement-2: for a group of numbers $(G M)^{2}=(A M) \times(H M)$.
573. Statement-1: If $a, b, c, d$ be four distinct positive quantities in H.P. then $a+d>b+c, a d>b c$.

Statement-2: A.M. > G.M. > H.M.
574. Statement-1: The sum of n arithmetic means between two given numbers is n times the single arithmetic mean between them.
Statement-2: $\mathrm{n}^{\text {th }}$ term of the A.P. with first term a and common difference d is $\mathrm{a}+(\mathrm{n}+1) \mathrm{d}$.
575.

Statement-1: If $a+b+c=3 \quad a>0, b>0, c>0$, then greatest value of $a^{2} b^{3} c^{4}=3^{10} 2^{4}-77$.
Statement-2: If $a_{i}>0 i=1,2,3, \ldots \ldots n$, then $\frac{a_{1}+a_{2}+a_{3}+\ldots .+a_{n}}{n} \geq\left(a_{1} a_{2} \ldots . a_{n}\right)^{1 / n}$

## IMP QUESTION FROM COMPETETIVE EXAMS

1. If the angles of a quadrilateral are in A.P. whose common difference is $10^{\circ}$, then the angles of the quadrilateral are
(a) $65^{\circ}, 85^{\circ}, 95^{\circ}, 105^{\circ}$
(b) $75^{\circ}, 85^{\circ}, 95^{\circ}, 105^{\circ}$
(b)
$65^{\circ}, 75^{\circ}, 85^{\circ}, 95^{\circ}$ (d)
(d)
$65^{\circ}, 95^{\circ}, 105^{\circ}, 115^{\circ}$
2. If the sum of first $n$ terms of an A.P. be equal to the sum of its first $m$ terms, $(m \neq n)$, then the sum of its first $(m+n)$ terms will be
[MP PET 1984]
(a) o
(b) $n$
(c)
(d) $m+n$
3. If $p, q, r$ are in A.P. and are positive, the roots of the quadratic equation $p x^{2}+q x+r=0$ are all real for [IIT 1995]
(a) $\left|\frac{r}{p}-7\right| \geq 4 \sqrt{3}$
(b) $\left|\frac{p}{r}-7\right|<4 \sqrt{3}$
(c) All $p$ and $r$
(d) No $p$ and $r$
4. The sums of $n$ terms of three A.P.'s whose first term is 1 and common differences are $1,2,3$ are $S_{1}, S_{2}, S_{3}$ respectively. The true relation is
(a) $S_{1}+S_{3}=S_{2}$
(b) $S_{1}+S_{3}=2 S_{2}$
(c) $\quad S_{1}+S_{2}=2 S_{3}$
(d) $S_{1}+S_{2}=S_{3}$
5. The value of $x$ satisfying $\log _{a} x+\log _{\sqrt{a}} x+\log _{3 \sqrt{a}} x+\ldots \ldots \ldots . . \log _{a \sqrt{a}} x=\frac{a+1}{2}$ will be
(a) $x=a$
(b) $x=a^{a}$
(c) $\quad x=a^{-1 / a}$
(d) $\quad x=a^{1 / a}$
6. Jairam purchased a house in Rs. 15000 and paid Rs. 5000 at once. Rest money he promised to pay in annual installment of Rs. 1000 with $10 \%$ per annum interest. How much money is to be paid by Jairam [UPSEAT 1999]
(a) Rs. 21555
(b) Rs. 20475
(c)
Rs. 20500
(d) Rs. 20700
7. Let $S_{1}, S_{2}, \ldots \ldots .$. be squares such that for each $n \geq 1$, the length of a side of $S_{n}$ equals the length of a diagonal of $S_{n+1}$. If the length of a side of $S_{1}$ is 10 cm , then for which of the following values of $n$ is the area of $S_{n}$ less then 1 sq cm
(a) 7
(b) 8
(c) $\quad 9$
(d) 10
8. If $S_{1}, S_{2}, S_{3}, \ldots \ldots \ldots . . . S_{m}$ are the sums of $n$ terms of $m$ A.P.'s whose first terms are $1,2,3$, $\qquad$ $m$ and common differences are $1,3,5$ $\qquad$ $.2 m-1$ respectively, then $S_{1}+S_{2}+S_{3}+\ldots . . . . S_{m}=$
(a) $\frac{1}{2} m n(m n+1)$
(b) $m n(m+1)$
(c) $\quad \frac{1}{4} m n(m n-1)$
(d) None of the above
9. If $a_{1}, a_{2}, a_{3}, \ldots \ldots . . a_{24}$ are in arithmetic progression and $a_{1}+a_{5}+a_{10}+a_{15}+a_{20}+a_{24}=225$, then $a_{1}+a_{2}+a_{3}+\ldots \ldots \ldots .+a_{23}+a_{24}=$
[MP PET 1999; AMU 1997]
(a) 909
(b) 75
(c)
750
(d) 900
10. If the roots of the equation $x^{3}-12 x^{2}+39 x-28=0$ are in A.P., then their common difference will be
(a) $\pm 1$
(b) $\pm 2$
(c) $\pm 3$
(4) $\pm 4$
[UPSEAT 1994, 99, 2001; RPET 2001]
11. If the first term of a G.P. $a_{1}, a_{2}, a_{3}, \ldots \ldots \ldots$. . .is unity such that $4 a_{2}+5 a_{3}$ is least, then the common ratio of G.P. is
(a) $-\frac{2}{5}$
(b) $-\frac{3}{5}$
(c) $\frac{2}{5}$
(d) None of these
12. If the sum of the $n$ terms of G.P. is $S$ product is $P$ and sum of their inverse is $R$, than $P^{2}$ is equal to
(a) $\frac{R}{S}$
(b) $\frac{S}{R}$
(c) $\quad\left(\frac{R}{S}\right)^{n}$
(d) $\quad\left(\frac{S}{R}\right)^{n}$
[IIT 1966; Roorkee 1981]
13. Let $n(>1)$ be a positive integer, then the largest integer $m$ such that $\left(n^{m}+1\right)$ divides $\left(1+n+n^{2}+\ldots \ldots .+n^{127}\right)$, is
(a) 32
(b) 63
(c) 64
(d) 127 [IIT 1995]

## Download FREE Study Package from www.TekoClasses.com \& Learn on Video www.MathsBySuhag.com

 Phone : 0903903 7779, 9893058881 WhatsApp 9009260559 SEQUENCE \& SERIES PART 2 OF 214. A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying odd places, then the common ratio will be equal to
(a) 2
(b) 3
(c) 4
(d) 5
15. If $f(x)$ is a function satisfying $f(x+y)=f(x) f(y)$ for all $x, y \in N$ such that $f(1)=3$ and $\sum_{x=1}^{n} f(x)=120$. Then the value of $n$ is

## [IIT 1992]

(a) 4
(b) 5
(c) 6
(d) None of these
16. If $n$ geometric means between $a$ and $b$ be $G_{1}, G_{2}, \ldots . . G_{n}$ and a geometric mean be $G$, then the true relation is
(a) $G_{1} \cdot G_{2} \ldots \ldots . . G_{n}=G$
(b) $G_{1} \cdot G_{2} \ldots \ldots . . G_{n}=G^{1 / n}$
(c) $G_{1} \cdot G_{2} \ldots \ldots . . G_{n}=G^{n}$
(d) $G_{1} \cdot G_{2} \ldots \ldots . . G_{n}=G^{2 / n}$
17. $\alpha, \beta$ are the roots of the equation $x^{2}-3 x+a=0$ and $\gamma, \delta$ are the roots of the equation $x^{2}-12 x+b=0$. If $\alpha, \beta, \gamma, \delta$ form an increasing G.P., then $(a, b)=$ [DCE 2000]
(a) $(3,12)$
(b) $(12,3)$
(c) $\quad(2,32)$
(d) $(4,16)$
18. $2.357=$

## [IIT 1983; RPET 1995]

(a) $\frac{2355}{1001}$
(b) $\frac{2370}{997}$
(c) $\frac{2355}{999}$
(d) None of these
19. If $1+\cos \alpha+\cos ^{2} \alpha+\ldots \ldots \infty=2-\sqrt{2}$, then $\alpha,(0<\alpha<\pi)$ is
[Roorkee 2000; AMU 2005]
(a) $\pi / 8$
(b) $\pi / 6$
(c) $\pi / 4$
(d) $3 \pi / 4$
20. The first term of an infinite geometric progression is $x$ and its sum is 5 . Then
[IIT Screening 2004]
(a) $0 \leq x \leq 10$
(b) $0<x<10$
(c)
$-10<x<0$
(d) $x>10$
21. If $a, b, c$ are in H.P., then the value of $\left(\frac{1}{b}+\frac{1}{c}-\frac{1}{a}\right)\left(\frac{1}{c}+\frac{1}{a}-\frac{1}{b}\right)$, is [MP PET 1998; Pb. CET 2000]
(a) $\frac{2}{b c}+\frac{1}{b^{2}}$
(b) $\frac{3}{c^{2}}+\frac{2}{c a}$
(c) $\frac{3}{b^{2}}-\frac{2}{a b}$
(d) None of these
22. If $m$ is a root of the given equation $(1-a b) x^{2}-\left(a^{2}+b^{2}\right) x-(1+a b)=0$ and $m$ harmonic means are inserted between $a$ and $b$, then the difference between the last and the first of the means equals
(a) $b-a$
(b) $a b(b-a)$
(c) $a(b-a)$
(d)
$a b(a-b)$
23. A boy goes to school from his home at a speed of $x \mathrm{~km} / \mathrm{hour}$ and comes back at a speed of $y \mathrm{~km} / \mathrm{hour}$, then the average speed is given by
[DCE 2002]
(a) A.M.
(b) G.M.
(c) H.M.
(d) None of these
24. If $a, b, c, d$ be in H.P., then
(a) $a^{2}+c^{2}>b^{2}+d^{2}$
(b) $a^{2}+d^{2}>b^{2}+c^{2}$
(c)
$a c+b d>b^{2}+c^{2}$
(d) $a c+b d>b^{2}+d^{2}$
25. If $a, b, c$ are the positive integers, then $(a+b)(b+c)(c+a)$ is
[DCE 2000]
(a) $<8 a b c$
(b) $>8 a b c$
(c) $=8 a b c$
(d) None of these
26. In a G.P. the sum of three numbers is 14 , if 1 is added to first two numbers and subtracted from third number, the series becomes A.P., then the greatest number is
[Roorkee 1973]
(a) 8
(b) 4
(c) 24
(d)
16
27. If $a, b, c$ are in G.P. and $\log a-\log 2 b, \log 2 b-\log 3 c$ and $\log 3 c-\log a$ are in A.P., then $a, b, c$ are the length of the sides of a triangle which is
(a) Acute angled
(b) Obtuse angled
(c) Right angled
(d) Equilateral
28. If $A_{1}, A_{2} ; G_{1}, G_{2}$ and $H_{1}, H_{2}$ be $A M^{\prime} s, G M^{\prime} s$ and $H M^{\prime} s$ between two quantities, then the value of $\frac{G_{1} G_{2}}{H_{1} H_{2}}$ is

Download FREE Study Package from www.TekoClasses.com \& Learn on Video www.MathsBySuhag.com Phone : 0903903 7779, 9893058881 WhatsApp 9009260559 SEQUENCE \& SERIES PART 2 OF 2
(a) $\frac{A_{1}+A_{2}}{H_{1}+H_{2}}$
(b) $\frac{A_{1}-A_{2}}{H_{1}+H_{2}}$
(c) $\frac{A_{1}+A_{2}}{H_{1}-H_{2}}$
(d) $\frac{A_{1}-A_{2}}{H_{1}-H_{2}}$
29. The harmonic mean of two numbers is 4 and the arithmetic and geometric means satisfy the relation $2 A+G^{2}=27$, the numbers are
[MNR 1987; UPSEAT 1999, 2000]
(a) 6,3
(b) 5,4
(c)
5, -2.5
(d)
$-3,1$
30. If the A.M. of two numbers is greater than G.M. of the numbers by 2 and the ratio of the numbers is $4: 1$, then the numbers are
[RPET 1988]
(a) 4,1
(b) 12, 3
(c) 16,4
(d) None of these
31. If the A.M. and G.M. of roots of a quadratic equations are 8 and 5 respectively, then the quadratic equation will be
[Pb. CET 1990]
(a) $x^{2}-16 x-25=0$
(b) $x^{2}-8 x+5=0$
(c) $x^{2}-16 x+25=0$
(d) $x^{2}+16 x-25=0$
32. The A.M., H.M. and G.M. between two numbers are $\frac{144}{15}$, 15 and 12 , but not necessarily in this order. Then H.M., G.M. and A.M. respectively are
(a) $15,12, \frac{144}{15}$
(b) $\frac{144}{15}, 12,15$
(c) $12,15, \frac{144}{15}$
(d) $\frac{144}{15}, 15,12$
33. If $a$ be the arithmetic mean of $b$ and $c$ and $G_{1}, G_{2}$ be the two geometric means between them, then $G_{1}^{3}+G_{2}^{3}=$
(a) $G_{1} G_{2} a$
(b) $2 G_{1} G_{2} a$
(c) $\quad 3 G_{1} G_{2} a$
(d) None of these
34. Three numbers form a G.P. If the $3^{r d}$ term is decreased by 64 , then the three numbers thus obtained will constitute an A.P. If the second term of this A.P. is decreased by 8 , a G.P. will be formed again, then the numbers will be
(a) $4,20,36$
(b) $4,12,36$
(c)
4, 20, 100
(d) None of the above
35. If $x>1, y>1, z>1$ are in G.P., then $\frac{1}{1+\operatorname{In} x}, \frac{1}{1+\operatorname{In} y}, \frac{1}{1+\operatorname{In} z}$ are in [IIT 1998; UPSEAT 2001]
(a) A.P.
(b) H.P.
(c)
G.P.
(d) None of these
36. $a, g, h$ are arithmetic mean, geometric mean and harmonic mean between two positive numbers $x$ and $y$ respectively. Then identify the correct statement among the following

## [Karnataka CET 2001]

(a) $h$ is the harmonic mean between $a$ and $g$
(b) No such relation exists between $a, g$ and $h$
(c) $g$ is the geometric mean between $a$ and h
(d) $\quad \mathrm{A}$ is the arithmetic mean between $g$ and $h$
37. $2^{\sin \theta}+2^{\cos \theta}$ is greater than

## [AMU 200o]

(a) $\frac{1}{2}$
(b) $\sqrt{2}$
(c) $\quad 2^{\frac{1}{\sqrt{2}}}$
(d) $\quad 2^{\left(1-\frac{1}{\sqrt{2}}\right)}$
38. If $a, b, c, d$ are positive real numbers such that $a+b+c+d=2$, then $M=(a+b)(c+d)$ satisfies the relation
[IIT Screening 2000]
(a) $0<M \leq 1$
(b) $1 \leq M \leq 2$
(c) $2 \leq M \leq 3$
(d) $3 \leq M \leq 4$
39. Suppose $a, b, c$ are in A.P. and $a^{2}, b^{2}, c^{2}$ are in G.P. If $a<b<c$ and $a+b+c=\frac{3}{2}$, then the value of $a$ is

## [IIT Screening 2002]

(a) $\frac{1}{2 \sqrt{2}}$
(b) $\frac{1}{2 \sqrt{3}}$
(c) $\quad \frac{1}{2}-\frac{1}{\sqrt{3}}$ (d) $\quad \frac{1}{2}-\frac{1}{\sqrt{2}}$

Download FREE Study Package from www.TekoClasses.com \& Learn on Video www.MathsBySuhag.com Phone : 0903903 7779, 9893058881 WhatsApp 9009260559 SEQUENCE \& SERIES PART 2 OF 2
40. $n^{\text {th }}$ term of the series $1+\frac{4}{5}+\frac{7}{5^{2}}+\frac{10}{5^{3}}+$ $\qquad$ will be
(a) $\frac{3 n+1}{5^{n-1}}$
(b) $\frac{3 n-1}{5^{n}}$
(c) $\frac{3 n-2}{5^{n-1}}$
(d) $\frac{3 n+2}{5^{n-1}}$
41. The sum of the series $\frac{1}{1+1^{2}+1^{4}}+\frac{2}{1+2^{2}+2^{4}}+\frac{3}{1+3^{2}+3^{4}}+\ldots \ldots \ldots$. to $n$ terms is
(a) $\frac{n\left(n^{2}+1\right)}{n^{2}+n+1}$
(b) $\frac{n(n+1)}{2\left(n^{2}+n+1\right)}$
(c) $\frac{n\left(n^{2}-1\right)}{2\left(n^{2}+n+1\right)}$
(d) None of these
42. For any odd integer $n \geq 1$, $n^{3}-(n-1)^{3}+\ldots \ldots \ldots .+(-1)^{n-1} 1^{3}=\quad$ [IIT 1996]
(a) $\frac{1}{2}(n-1)^{2}(2 n-1)$
(b) $\frac{1}{4}(n-1)^{2}(2 n-1)$
(c) $\quad \frac{1}{2}(n+1)^{2}(2 n-1)$
(d) $\quad \frac{1}{4}(n+1)^{2}(2 n-1)$
43. The sum of $n$ terms of the series $\frac{1}{1+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{7}}+\ldots . \ldots \ldots$. is [UPSEAT 2002]
(a) $\sqrt{2 n+1}$
(b) $\frac{1}{2} \sqrt{2 n+1}$
(c) $\sqrt{2 n+1}-1$
(d) $\frac{1}{2}(\sqrt{2 n+1}-1)$
44. $n^{\text {th }}$ term of the series $\frac{1^{3}}{1}+\frac{1^{3}+2^{3}}{1+3}+\frac{1^{3}+2^{3}+3^{3}}{1+3+5}+\ldots . . \quad$ will be
[Pb. CET 2000]
(a) $n^{2}+2 n+1$
(b) $\frac{n^{2}+2 n+1}{8}$
(c) $\quad \frac{n^{2}+2 n+1}{4}$
(d) $\frac{n^{2}-2 n+1}{4}$
45. The sum of the series $\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\ldots+\frac{1}{\sqrt{n^{2}-1}+\sqrt{n^{2}}}$
equals
[AMU 2002]
(a) $\frac{(2 n+1)}{\sqrt{n}}$
(b) $\frac{\sqrt{n}+1}{\sqrt{n}+\sqrt{n-1}}$
(c) $\quad \frac{\left(n+\sqrt{n^{2}-1}\right)}{2 \sqrt{n}}$
(d) $n-1$

## ANSWER

| 1 | b | 2 | a | 3 | a | 4 | b | 5 | d |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 6 | c | 7 | b,c,d | 8 | a | 9 | d | 10 | c |
| 11 | a | 12 | d | 13 | c | 14 | c | 15 | a |
| 16 | c | 17 | c | 18 | c | 19 | d | 20 | b |
| 21 | c | 22 | b | 23 | c | 24 | c | 25 | b |
| 26 | a | 27 | b | 28 | a | 29 | a | 30 | c |
| 31 | c | 32 | b | 33 | b | 34 | c | 35 | b |
| 36 | c | 37 | d | 38 | a | 39 | d | 40 | c |
| 41 | b | 42 | d | 43 | d | 44 | c | 45 | d |

For 39 Years Que. of IIT-JEE (Advanced)
we have already distributed a book

