11. Linear Combinations:

Given a finite set of vectors $\vec{a}, \vec{b}, \vec{c}, \ldots \ldots$. then the vector $\vec{r}=x \vec{a}+y \vec{b}+z \vec{c}+\ldots \ldots$. is called a linear
(a) If \vec{a}, \vec{b} are non zero, non-collinear vectors then $x \vec{a}+y \vec{b}=x^{\prime} \vec{a}+y^{\prime} \vec{b} \Rightarrow x=x^{\prime} ; y=y^{\prime}$
(b) FundamentalTheorem: Let \vec{a}, \vec{b} be non zero, non collinear vectors. Then any vector \vec{r} coplanarN with \vec{a}, \vec{b} can be expressed uniquely as a linear combination of \vec{a}, \vec{b}
i.e. There exist some uniquly $x, y \in R$ such that $x \vec{a}+y \vec{b}=\vec{r}$.
(c) If $\vec{a}, \vec{b}, \vec{c}$ are non-zero, non-coplanar vectors then:

$$
x \vec{a}+y \vec{b}+z \vec{c}=x^{\prime} \vec{a}+y^{\prime} \vec{b}+z^{\prime} \vec{c} \Rightarrow x=x^{\prime}, y=y^{\prime}, z=z^{\prime}
$$

(d) Fundamental Theorem In Space: Let $\vec{a}, \vec{b}, \vec{c}$ be non-zero, non-coplanar vectors in space. Then any vector \vec{r}, can be uniquly expressed as a linear combination of $\vec{a}, \vec{b}, \vec{c}$ i.e. There exist some unique $x, y{ }^{\infty}$ $\in R$ such that $x \vec{a}+y \vec{b}+z \vec{c}=\vec{r}$.
(e) If $\vec{x}_{1}, \vec{x}_{2}, \ldots \ldots \vec{x}_{n}$ are n non zero vectors, \& $k_{1}, k_{2}, \ldots . k_{n}$ are n scalars \& if the linearo combination $\mathrm{k}_{1} \overrightarrow{\mathrm{x}}_{1}+\mathrm{k}_{2} \overrightarrow{\mathrm{x}}_{2}+\ldots \ldots . \mathrm{k}_{\mathrm{n}} \overrightarrow{\mathrm{x}}_{\mathrm{n}}=0 \Rightarrow \mathrm{k}_{1}=0, \mathrm{k}_{2}=0 \ldots . \mathrm{k}_{\mathrm{n}}=0$ then we say that ${ }^{\circ}$. vectors $\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots \ldots . \overrightarrow{\mathrm{x}}_{\mathrm{n}}$ are Linearly Independent Vectors.
If $\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots \ldots \overrightarrow{\mathrm{x}}_{\mathrm{n}}$ are not Linearly Independent then they are said to be Linearly Dependent vectors. i.e. $\hat{\mathrm{N}}$ if $k_{1} \overrightarrow{\mathrm{x}}_{1}+\mathrm{k}_{2} \overrightarrow{\mathrm{x}}_{2}+\ldots \ldots .+\mathrm{k}_{\mathrm{n}} \overrightarrow{\mathrm{x}}_{\mathrm{n}}=0$ \& if there exists at least one $\mathrm{k}_{\mathrm{r}} \neq 0$ then $\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots \ldots . \overrightarrow{\mathrm{x}}_{\mathrm{n}}$ are said to be

Linearly Dependent.

Note 1: If $\mathrm{k}_{\mathrm{r}} \neq 0 ; \mathrm{k}_{1} \overrightarrow{\mathrm{x}}_{1}+\mathrm{k}_{2} \overrightarrow{\mathrm{x}}_{2}+\mathrm{k}_{3} \overrightarrow{\mathrm{x}}_{3}+\ldots \ldots+\mathrm{k}_{\mathrm{r}} \overrightarrow{\mathrm{x}}_{\mathrm{r}}+\ldots \ldots+\mathrm{k}_{\mathrm{n}} \overrightarrow{\mathrm{x}}_{\mathrm{n}}=0$ $-\mathrm{k}_{\mathrm{r}} \overrightarrow{\mathrm{x}}_{\mathrm{r}}=\mathrm{k}_{1} \overrightarrow{\mathrm{x}}_{1}+\mathrm{k}_{2} \overrightarrow{\mathrm{x}}_{2}+\ldots \ldots .+\mathrm{k}_{\mathrm{r}-1} \cdot \overrightarrow{\mathrm{x}}_{\mathrm{r}-1}+\mathrm{k}_{\mathrm{r}+1} \cdot \overrightarrow{\mathrm{x}}_{\mathrm{r}+1}+\ldots \ldots+\mathrm{k}_{\mathrm{n}} \overrightarrow{\mathrm{x}}_{\mathrm{n}}$
$-\mathrm{k}_{\mathrm{r}} \frac{1}{\mathrm{k}_{\mathrm{r}}} \overrightarrow{\mathrm{x}}_{\mathrm{r}}=\mathrm{k}_{1} \frac{1}{\mathrm{k}_{\mathrm{r}}} \overrightarrow{\mathrm{x}}_{1}+\mathrm{k}_{2} \frac{1}{\mathrm{k}_{\mathrm{r}}} \overrightarrow{\mathrm{x}}_{2}+\ldots .+\mathrm{k}_{\mathrm{r}-1} \cdot \frac{1}{\mathrm{k}_{\mathrm{r}}} \overrightarrow{\mathrm{x}}_{\mathrm{r}-1}+\ldots .+\mathrm{k}_{\mathrm{n}} \frac{1}{\mathrm{k}_{\mathrm{r}}} \overrightarrow{\mathrm{x}}_{\mathrm{n}}$
$-\mathrm{k}_{\mathrm{r}} \frac{1}{\mathrm{k}_{\mathrm{r}}} \overrightarrow{\mathrm{x}}_{\mathrm{r}}=\mathrm{k}_{1} \frac{1}{\mathrm{k}_{\mathrm{r}}} \overrightarrow{\mathrm{x}}_{1}+\mathrm{k}_{2} \frac{1}{\mathrm{k}_{\mathrm{r}}} \overrightarrow{\mathrm{x}}_{2}+\ldots .+\mathrm{k}_{\mathrm{r}-1} \cdot \frac{1}{\mathrm{k}_{\mathrm{r}}} \overrightarrow{\mathrm{x}}_{\mathrm{r}-1}+\ldots$
$\overrightarrow{\mathrm{x}}_{\mathrm{r}}=\mathrm{c}_{1} \overrightarrow{\mathrm{x}}_{1}+\mathrm{c}_{2} \overrightarrow{\mathrm{x}}_{2}+\ldots \ldots+\mathrm{c}_{\mathrm{r}-1} \overrightarrow{\mathrm{x}}_{\mathrm{r}-1}+\mathrm{c}_{\mathrm{r}} \overrightarrow{\mathrm{x}}_{\mathrm{r}-1}+\ldots \ldots+\mathrm{c}_{\mathrm{n}} \overrightarrow{\mathrm{x}}_{\mathrm{n}}$
i.e. $\overrightarrow{\mathrm{x}}_{\mathrm{r}}$ is expressed as a linear combination of vectors.
$-\mathrm{k}_{\mathrm{r}} \frac{1}{\mathrm{k}_{\mathrm{r}}} \overrightarrow{\mathrm{x}}_{\mathrm{r}}=\mathrm{k}_{1} \frac{1}{\mathrm{k}_{\mathrm{r}}} \overrightarrow{\mathrm{x}}_{1}+\mathrm{k}_{2} \frac{1}{\mathrm{k}_{\mathrm{r}}} \overrightarrow{\mathrm{x}}_{2}+\ldots .+\mathrm{k}_{\mathrm{r}-1} \cdot \frac{1}{k_{r}} \overrightarrow{\mathrm{x}}_{\mathrm{r}-1}+\ldots$
$\overrightarrow{\mathrm{x}}_{\mathrm{r}}=\mathrm{c}_{1} \overrightarrow{\mathrm{x}}_{1}+\mathrm{c}_{2} \overrightarrow{\mathrm{x}}_{2}+\ldots .+\mathrm{c}_{\mathrm{r}-1} \overrightarrow{\mathrm{x}}_{\mathrm{r}}+\mathrm{c}_{\mathrm{r}} \overrightarrow{\mathrm{r}}_{\mathrm{r}-1}+\ldots \ldots+\mathrm{c}_{\mathrm{n}} \overrightarrow{\mathrm{x}}_{\mathrm{n}}$
i.e. $\overrightarrow{\mathrm{x}}_{\mathrm{r}}$ is expressed as a linear combination of vectors.
$\vec{x}_{1}, \vec{x}_{2}, \ldots \ldots \ldots . \vec{x}_{r-1}, \vec{x}_{r+1}, \ldots \ldots \ldots \vec{x}_{n}$
Hence $\overrightarrow{\mathrm{x}}_{\mathrm{r}}$ with $\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots . \overrightarrow{\mathrm{x}}_{\mathrm{r}-1}, \overrightarrow{\mathrm{x}}_{\mathrm{r}+1} \ldots \ldots \overrightarrow{\mathrm{x}}_{\mathrm{n}}$ forms a linearly dependent set of vectors. page 36 of

- If $\vec{a}=3 \hat{i}+2 \hat{j}+5 \hat{k}$ then \vec{a} is expressed as a Linear Combination of vectors $\hat{i}, \hat{j}, \hat{k}$ Also, $\vec{a}, \hat{i}, \hat{j}, \underline{y}$ \hat{k} form a linearly dependent set of vectors. In general, every set of four vectors is a linearly dependent \propto system.
- $\quad \hat{i}, \hat{j}, \hat{k}$ are Linearly Independent set of vectors. For

$$
\mathrm{K}_{1} \hat{\mathrm{i}}+\mathrm{K}_{2} \hat{\mathrm{j}}+\mathrm{K}_{3} \hat{\mathrm{k}}=0 \Rightarrow \mathrm{~K}_{1}=\mathrm{K}_{2}=\mathrm{K}_{3}=0
$$

Two vectors $\vec{a} \& \vec{b}$ are linearly dependent $\Rightarrow \vec{a}$ is parallel to \vec{b} i.e. $\vec{a} \times \vec{b}=0 \Rightarrow$ linear dependence of $\vec{a} \& \vec{b}$. Conversely if $\vec{a} x \vec{b} \neq 0$ then $\vec{a} \& \vec{b}$ are linearly independent. If three vectors $\vec{a}, \vec{b}, \vec{c}$ are linearly dependent, then they are coplanar i.e. $[\vec{a}, \vec{b}, \vec{c}]=0$, conversely, if $[\vec{a}, \vec{b}, \vec{c}] \neq 0$, then the vectors are linearly independent.

$\frac{\pi}{5}$
$\frac{\pi}{5}$

Solved Example: Given A that the points $\vec{a}-2 \vec{b}+3 \vec{c}, 2 \vec{a}+3 \vec{b}-4 \vec{c},-7 \vec{b}+10 \vec{c}, A, B, C$ have position vector prove that vectors $\overrightarrow{A B}$ and $\overrightarrow{A C}$ are linearly dependent.
Solution. Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ be the given points and O be the point of reference then
$\overrightarrow{O A}=\vec{a}-2 \vec{b}+3 \vec{c}, \overrightarrow{O B}=2 \vec{a}+3 \vec{b}-4 \vec{c} \quad$ and $\quad \overrightarrow{O C}=-7 \vec{b}+10 \vec{c}$
Now $\overrightarrow{A B}=$ p.v. of $B-$ p.v. of A
$=\overrightarrow{O B}-\overrightarrow{O A}=(\vec{a}+5 \vec{b}-7 \vec{c})=-\overrightarrow{A B}$
$\therefore \overrightarrow{A C}=\lambda \overrightarrow{A B}$ where $\lambda=-1$. Hence $\overrightarrow{A B}$ and $\overrightarrow{A C}$ are linearly dependent
Solved Example: Prove that the vectors $5 \vec{a}+6 \vec{b}+7 \vec{c}, 7 \vec{a}-8 \vec{b}+9 \vec{c}$ and $3 \vec{a}+20 \vec{b}+5 \vec{c}$ are linearly dependent $\vec{a}, \vec{b}, \vec{c}$ being linearly independent vectors.
Solution.
We know that if these vectors are linearly dependent, then we can express one of them as a linear combination of the other two.

Now let us assume that the given vector are coplanar，then we can write
$5 \vec{a}+6 \vec{b}+7 \vec{c}=\ell(7 \vec{a}-8 \vec{b}+9 \vec{c})+m(3 \vec{a}+20 \vec{b}+5 \vec{c})$
where ℓ, m are scalars
Comparing the coefficients of \vec{a}, \vec{b} and \vec{c} on both sides of the equation
$5=7 \ell+3$
$6=-8 \ell+20 m$
$7=9 \ell+5 m$
From（i）and（iii）we get
$4=8 \ell \quad \Rightarrow \quad \ell=\frac{1}{2}=m$ which evidently satisfies（ii）equation too．
Hence the given vectors are linearly dependent．

Self Practice Problems ：

1．Does there exist scalars u ，v ，w such that $u \vec{e}_{1}+v \vec{e}_{2}+w \vec{e}_{3}=\vec{i}$ where $\vec{e}_{1}=\vec{k}, \vec{e} \vec{e}_{2}=\vec{j}+\vec{k}, \overrightarrow{e_{3}}=-\vec{j}+2 \vec{k}$ ？
Ans．No
2．Consider a base $\vec{a}, \vec{b}, \vec{c}$ and a vector $-2 \vec{a}+3 \vec{b}-\vec{c}$ ．Compute the co－ordinates of this vector relatively to the base p, q, r where $\vec{p}=2 \vec{a}-3 \vec{b}, \vec{q}=\vec{a}-2 \vec{b}+\vec{c}, \vec{r}=-3 \vec{a}+\vec{b}+2 \vec{c} . \quad$ Ans．$\quad(0,-7 / 5,1 / 5)$
3．If \vec{a} and \vec{b} are non－collinear vectors and $\vec{A}=(x+4 y) \vec{a}+(2 x+y+1) \vec{b}$ and $\vec{B}=(y-2 x+2) \vec{a}+\frac{L}{2}$ $(2 x-3 y-1) \vec{b}$ ，find x and y such that $3 \vec{A}=2 \vec{B}$ ．

Ans．$\quad x=2, y=-1$
4．If vectors $\vec{a}, \vec{b}, \vec{c}$ be linearly independent，then show that ：（i）$\vec{a}-2 \vec{b}+3 \vec{c},-2 \vec{a}+3 \vec{b}-4 \vec{c},-\vec{b}+2 \vec{c}$ are linearly dependent \quad（ii）$\vec{a}-3 \vec{b}+2 \vec{c},-2 \vec{a}-4 \vec{b}-\vec{c}, 3 a+2 \vec{b}-\vec{c}$ are linearly independent．
5．Given that $\hat{i}-\hat{j}, \hat{i}-2 \hat{j}$ are two vectors．Find a unit vector coplanar with these vectors and perpendicular to the first vector $\hat{i}-\hat{j}$ ．Find also the unit vector which is perpendicular to the plane of the given
vectors．Do you thus obtain an orthonormal triad？
Ans．$\frac{1}{\sqrt{2}}(\hat{i}+\hat{j}) ; k$ ；Yes
6．If with reference to a right handed system of mutually perpendicular unit vectors $\hat{i}, \hat{j}, \hat{k} \quad \vec{\alpha}=3 \vec{i}-\vec{j}$ ， $\vec{\beta}=2 \vec{i}+3 \vec{j}$ express $\vec{\beta}$ in the form $\vec{\beta}=\vec{\beta}_{1}+\vec{\beta}_{2}$ where $\vec{\beta}_{1}$ is parallel to $\vec{\alpha} \& \vec{\beta}_{2}$ is perpendicular to $\vec{\alpha}$ ．
Ans．$\vec{\beta}_{1}=\frac{3}{2} \vec{i}-\frac{1}{2} \vec{j}, \vec{\beta}_{2}=\frac{1}{2} \vec{i}+\frac{3}{2} \vec{j}-3 \vec{k}$
37 of 77

7．Prove that a vector \vec{r} in space can be expressed linearly in terms of three non－coplanar，non－null vectors $\vec{a}, \vec{b}, \vec{c}$ in the form $\vec{r}=\frac{[\vec{r} \vec{b} \vec{c}] \vec{a}+[\vec{r} \vec{c} \vec{a}] \vec{b}+[\vec{r} \vec{a} \vec{b}] \vec{c}}{[\vec{a} \vec{b} \vec{c}]}$ $[\vec{a} \vec{b} \vec{c}]$
Note：Test Of Collinearity：Three points A, B, C with position vectors $\vec{a}, \vec{b}, \vec{c}$ respectively are collinear，if \＆ only if there exist scalars $x \cdot y$ not all zero simultaneously such that；$x \vec{a}+y \vec{b}+z \vec{c}=0$ ，where $x+y \underset{y}{x}$ $+z=0$ ． if and only if there exist scalars x, y, z, w not all zero simultaneously such that $x \vec{a}+y \vec{b}+z \vec{c}+w \vec{d}=0$ where，$x+y+z+w=0$ ．
Solved Example Show that the vectors $2 \vec{a}-\vec{b}+3 \vec{c}, \vec{a}+\vec{b}-2 \vec{c}$ and $\vec{a}+\vec{b}-3 \vec{c}$ are non－coplanar vectors． Solution．Let，the given vectors be coplanar．

Then one of the given vectors is expressible in terms of the other two．
Let $\quad 2 \vec{a}-\vec{b}+3 \vec{c}=x(\vec{a}+\vec{b}-2 \vec{c})+y(\vec{a}+\vec{b}-3 \vec{c})$ ，for some scalars x and y ．
$\Rightarrow \quad 2 \vec{a}-\vec{b}+3 \vec{c}=(x+y) \vec{a}(x+y) \vec{b}+(-2 x-3 y) \vec{c}$
$\Rightarrow \quad 2=x+y,-1=x+y$ and $3=2 x-3 y$ ．
Solving，first and third of these equations，we get $x=9$ and $y=-7$ ．
Clearly，these values do not satisfy the thrid equation．
Hence，the given vectors are not coplanar．
Let

Solved Example：Prove that four points $2 \vec{a}+3 \vec{b}-\vec{c}, \vec{a}-2 \vec{b}+3 \vec{c}, 3 \vec{a}+4 \vec{b}-2 \vec{c}$ and $\vec{a}-6 \vec{b}+6 \vec{c}$ are coplanar．
 Solution．Let the given four points be P, Q, R and S respectively．These points are coplanar if the vectors $\overrightarrow{P Q}$ ， $\overrightarrow{P R}$ and $\overrightarrow{P S}$ are coplanar．These vectors are coplanar iff one of them can be expressed as a linear combination of other two．So，let

$$
\overrightarrow{P Q}=x \overrightarrow{P R}+y \overrightarrow{P S}
$$

$\Rightarrow-\vec{a}-5 \vec{b}+4 \vec{c}=x(\vec{a}+\vec{b}-\vec{c})+y(-\vec{a}-9 \vec{b}-7 \vec{c}) \Rightarrow-\vec{a}-5 \vec{b}+4 \vec{c}=(x-y) \vec{a}+(x-9 y) \vec{b}+(-x+7 y) \vec{c}$
$\Rightarrow x-y=-1, x-9 y=-5,-x+7 y=4 \quad$［Equating coeff．of $\vec{a}, \vec{b}, \vec{c}$ on both sides］
Solving the first of these three equations，we get $x=-\frac{1}{2}, y=\frac{1}{2}$ ．

These values also satisfy the third equation. Hence, the given four points are coplanar.

Self Practice Problems :

1. If, $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are any four vectors in 3-dimensional space with the same initial point and such that $3 \vec{a}-2 \vec{b}+\vec{c}-2 \vec{d}=\overrightarrow{0}$, show that the terminal A, B, C, D of these vectors are coplanar. Find the point at which $A C$ and $B D$ meet. Find the ratio in which P divides $A C$ and BD.
2. Show that the vector $\vec{a}-\vec{b}+\vec{c}, \vec{b}-\vec{c}-\vec{a}$ and $2 \vec{a}-3 \vec{b}-4 \vec{c}$ are non-coplanar, where $\vec{a}, \vec{b}, \vec{c}$, are any noncoplanar vectors.
3. Find the value of λ for which the four points with position vectors $-\hat{j}-\hat{k}, 4 \hat{i}+5 \hat{j}+\lambda \hat{k} \cdot 3 \hat{i}+9 \hat{j}+4 \hat{k}$ and ${ }^{*}$ or
$-4 \hat{i}+4 \hat{j}+4 \hat{k}$ are coplanar.
Ans. $\lambda=1$
4. Application Of Vectors:(a) Work done against a constant force $\overrightarrow{\mathrm{F}}$ over a displacement $\overrightarrow{\mathrm{s}}$ is defined as $\vec{W}=\overrightarrow{\mathrm{F}} . \overrightarrow{\mathrm{s}}$ (b) The tangential velocity $\overrightarrow{\mathrm{V}}$ of a body moving in a circle is given by $\vec{V}=\vec{W} \times \vec{r}$ where \vec{r} is the $p v$ of the point P.

(c) The moment of \vec{F} about ' O ' is defined as $\vec{M}=\vec{r} \times \vec{F}$ where \vec{r} is the pv of P wrt ' O '. The direction of \vec{M} is along the normal to the plane OPN such that $\vec{r}, \vec{F} \& \vec{M}$ form a right handed system.
(d) Moment of the couple $=\left(\vec{r}_{1}-\vec{r}_{2}\right) \times \vec{F}$ where $\vec{r}_{1} \& \vec{r}_{2}$ are pv's of the point of the application of the forces $\vec{F} \&-\vec{F}$.

Solved Example: Forces of magnitudes 5 and 3 units acting in the directions $6 \hat{i}+2 \hat{j}+3 \hat{k}$ and $3 \hat{i}+2 \hat{j}+6 \hat{k}$ respectively act on a particle which is displaced from the point $(2,2,-1)$ to $(4,3,1)$. Find the work done by the forces.
Solution. Let \vec{F} be the resultant force and \vec{d} be the displacement vector. Then,

Self Practice Problems :1. A point describes a circle uniformly in the \hat{i}, \hat{j} plane taking 12 seconds to $\mathbb{\sigma}^{\circ}$ complete one revolution. If its initial position vector relative to the centre is \hat{i}, and the rotation is from $\frac{\underset{\sim}{\leftrightharpoons}}{}$ \hat{i} to \hat{j}, find the position vector at the end of 7 seconds. Also find the velocity vector. Ans. $1 / 2 \ldots$ $(\hat{\mathrm{j}}-\sqrt{3} \hat{\mathrm{i}}), \mathrm{p} / 12(\hat{\mathrm{i}}-\sqrt{3} \hat{\mathrm{j}})$
2. The force represented by $3 \hat{i}+2 \hat{k}$ is acting through the point $5 \hat{i}+4 \hat{j}-3 \hat{k}$. Find its moment about the \sum point $\hat{i}+3 \hat{j}+\hat{k}$.

Ans. $\quad 2 \hat{i}-20 \hat{j}-3 \hat{k}$
3. Find the moment of the comple formed by the forces $5 \hat{i}+\hat{k}$ and $-5 \hat{i}-\hat{k}$ acting at the points $(9,-1,2)$ and ($3,-2,1$) respectively Ans. $\hat{i}-\hat{j}-5 \hat{k}$

Miscellaneous Solved Examples

Solved Example: Show that the points A, B, C with position vectors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$ and $3 \hat{i}-4 \hat{j}-4 \hat{k} \longmapsto$ respectively, are the vertices of a right angled triangle. Also find the remaining angles of the triangle.
Solution. We have, $\overrightarrow{A B} \quad=$ Position vector of B - Position vector of A

$$
=(\hat{i}-3 \hat{j}-5 \hat{k})-(2 \hat{i}-\hat{j}+\hat{k})=-\hat{i}-2 \hat{j}-6 \hat{k}
$$

$\overrightarrow{B C} \quad=$ Position vector of $C-$ Position vector of B
and, $\quad \overrightarrow{C A} \quad=$ Position vector of $A-$ Position vector of C
$=(2 \hat{i}-\hat{j}+\hat{k})-(3 \hat{i}-4 \hat{j}-4 \hat{k})=-\hat{i}+3 \hat{j}+5 \hat{k}$
Since $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}=(-\hat{i}-2 \hat{j}-6 \hat{k})+(2 \hat{i}-\hat{j}+\hat{k})+(-\hat{i}+3 \hat{j}+5 \hat{k})=\overrightarrow{0}$
So, A, B and C are the vertices of a triangle.
Now, $\quad \overrightarrow{B C} \cdot \overrightarrow{C A}=(2 \hat{i}-\hat{j}+\hat{k}) \cdot(-\hat{i}+3 \hat{j}+5 \hat{k})=-2-3+5=0$
$\Rightarrow \quad \overrightarrow{B C} \perp \overrightarrow{C A} \quad \Rightarrow \quad \angle B C A=\frac{\pi}{2} \quad$ Hence, $A B C$ is a right angled triangle.
Since a is the angle between the vectors $\overrightarrow{A B}$ and $\overrightarrow{A C}$. Therefore
$\cos A=\frac{\overrightarrow{A B} \cdot \overrightarrow{A C}}{|\overrightarrow{A B}||\overrightarrow{A C}|}=\frac{(-\hat{i}-2 \hat{j}-6 \hat{k}) \cdot(\hat{i}-3 \hat{j}-5 \hat{k})}{\sqrt{(-1)^{2}+(-2)^{2}+(-6)^{2}} \sqrt{1^{2}+(-3)^{2}+(-5)^{2}}}$

$$
=\frac{-1+6+30}{\sqrt{1+4+36} \sqrt{1+9+25}}=\frac{35}{\sqrt{41} \sqrt{35}}=\sqrt{\frac{35}{41}}
$$

$$
A=\cos ^{-1} \sqrt{\frac{35}{41}}
$$

$\cos B=\frac{\overrightarrow{B A}}{|\overrightarrow{B A}||\overrightarrow{B C}|}=\frac{(\hat{i}+2 \hat{j}+6 \hat{k})(2 \hat{i}-\hat{j}+\hat{k})}{\sqrt{1^{2}+2^{2}+6^{2}} \sqrt{2^{2}+(-1)^{2}+(1)^{2}}} \Rightarrow \cos B=\frac{2-2+6}{\sqrt{41} \sqrt{6}}=\sqrt{\frac{6}{41}} \Rightarrow B=\cos ^{-1} \sqrt{\frac{6}{41}}$
Solved Example: If $\vec{a}, \vec{b}, \vec{c}$ are three mutually perpendicular vectors of equal magnitude, prove that $\vec{a}+\vec{b}+\vec{c}$ is equally inclined with vectors \vec{a}, \vec{b} and \vec{c}.
Solution.: Let $|\vec{a}|=|\vec{b}|=|\vec{c}|=\lambda$ (say). Since $\vec{a}, \vec{b}, \vec{c}$ are mutually
perpendicular vectors, therefore $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}=0$
Now, $\quad|\vec{a}+\vec{b}+\vec{c}|^{2}$
$=\vec{a} \cdot \vec{a}+\vec{b} \cdot \vec{b}+\vec{c} \cdot \vec{c}+2 \vec{a} \cdot \vec{b}+2 \vec{b} \cdot \vec{c}+2 \vec{c} \cdot \vec{a}$
$=|\vec{a}|^{2}\left|+|\vec{b}|^{2}+|\vec{c}|^{2} \quad[\right.$ Using (i)]
$|\vec{a}+\vec{b}+\vec{c}|=\sqrt{3} \lambda$

$$
\begin{equation*}
[\because|\vec{a}|=|\vec{b}|=|\vec{c}|=\lambda] \tag{ii}
\end{equation*}
$$

Suppose $\vec{a}+\vec{b}+\vec{c}$ makes angles $\theta_{1}, \theta_{2}, \theta_{3}$ with \vec{a}, \vec{b} and \vec{c} respectively. Then,
[Using (ii)]

> Now,
> $\Rightarrow \quad|\overrightarrow{B E}|^{2}=|\overrightarrow{C F}|^{2} \Rightarrow\left|\frac{1}{2}(\vec{c}-2 \vec{b})\right|^{2}=\left|\frac{1}{2}(\vec{b}-2 \vec{c})\right|^{2}$
> $\Rightarrow \quad \frac{1}{4}|\vec{c}-2 \vec{b}|^{2}=\frac{1}{4}|\vec{b}-2 \vec{c}|^{2} \Rightarrow|\vec{c}-2 \vec{b}|^{2}=|\vec{b}-2 \vec{c}|^{2}$
> $\Rightarrow \quad(\vec{c}-2 \vec{b}) \cdot(\vec{c}-2 \vec{b})=(\vec{b}-2 \vec{c}) \cdot(\vec{b}-2 \vec{c})$
$\Rightarrow \quad \vec{c} \cdot \vec{c}-4 \vec{b} \cdot \vec{c}+4 \vec{b} \cdot \vec{b}=\vec{b} \cdot \vec{b}-4 \vec{b} \cdot \vec{c}+4 \vec{c} \cdot \vec{c}$
$\Rightarrow \quad|\vec{c}|^{2}-4 \vec{b} \cdot \vec{c}+4|\vec{b}|^{2}=|\vec{b}|^{2}-4 \vec{b} \cdot \vec{c}+4|\vec{c}|^{2}$

Solved $\overrightarrow{\overrightarrow{~ E x a m p l e: ~}} \underset{\text { Ex }}{A B} \quad \begin{aligned} & \text { Using vectors : Prove that } \cos (A+B)=\cos A \cos B-\sin A \sin B\end{aligned}$
Solution. Let OX and OY be the coordinate axes and let \hat{i} and \hat{j} be unit vectors along $O X$ and $O Y \mathbb{N}$ respectively. Let $\angle \mathrm{XOP}=\mathrm{A}$ and $\angle \mathrm{XOQ}=\mathrm{B}$. Drawn $\mathrm{PL} \perp \mathrm{OX}$ and $\mathrm{QM} \perp \mathrm{OX}$.
Clearly angle between $\overrightarrow{\mathrm{OP}}$ and $\overrightarrow{\mathrm{OQ}}$ is $\mathrm{A}+\mathrm{B}$
In $\triangle O L P, O L=O P \cos A$ and $L P=O P \sin A$. Therefore $\overrightarrow{O L}=(O P \cos A) \hat{i}$ and $\overrightarrow{L P}=(O P \sin A)(-\hat{j})$
Now.

$$
\overrightarrow{\mathrm{OL}}+\overrightarrow{\mathrm{LP}}=\overrightarrow{\mathrm{OP}}
$$

$\Rightarrow \quad \overrightarrow{\mathrm{OP}}=\mathrm{OP}[(\cos A) \hat{i}-(\sin A) \hat{j}]$
In $\triangle O M Q, O M=O Q \cos B$ and $M Q=O Q \sin B$. Therefore,

$$
\overrightarrow{O M}=(O Q \cos B) \hat{i}, \overrightarrow{M Q}=(O Q \sin B) \hat{j}
$$

Now, $\quad \overrightarrow{\mathrm{OM}}+\overrightarrow{\mathrm{MQ}}=\overrightarrow{\mathrm{OQ}}$
From (i) and (ii), we get

$$
\begin{gathered}
\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OQ}}=\mathrm{OP}[(\cos A) \hat{i}-(\sin A) \hat{j}] \cdot O Q[(\cos B) \hat{i}+(\sin B) \hat{j}] \\
=O P \cdot O Q[\cos A \cos B-\sin A \sin B]
\end{gathered}
$$

But, $\overrightarrow{O P} \cdot \overrightarrow{O Q}=|\overrightarrow{O P}||\overrightarrow{O Q}| \cos (A+B)=O P \cdot O Q \cos (A+B)$
$\therefore \quad O P \cdot O Q \cos (A+B)=O P . O Q[\cos A \cos B-\sin A \sin B]$
Solved $\overrightarrow{\vec{E}}$ Example: $\quad \begin{gathered}\cos (A+B)=\cos A \cos B-\sin A \sin B \\ \text { Prove that in any triangle }\end{gathered}$
(i) $\mathrm{c}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}-2 a b \cos C$ (ii)

Solution. (i) In $\triangle A B C, \overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}=0$
(ii) $c=b \cos A+a \cos B$.
or, $\overrightarrow{B C}+\overrightarrow{C A}=-\overrightarrow{A B}$
Squaring both sides
$(\overrightarrow{\mathrm{BC}})^{2}+(\overrightarrow{\mathrm{CA}})^{2}+(\overrightarrow{\mathrm{BC}}) \cdot \overrightarrow{\mathrm{CA}}+(\overrightarrow{\mathrm{AB}})^{2}$
$\Rightarrow \quad a^{2}+b^{2}+2(\overrightarrow{B C}, \overrightarrow{C A})=c^{2} \quad \Rightarrow \quad c^{2}=a^{2}+b^{2}=2 a b \cos (\pi-C)$
$\Rightarrow \quad c^{2}=a^{2}+b^{2}-2 a b \cos C$
(ii) $(\overrightarrow{B C}+\overrightarrow{C A}) \cdot \overrightarrow{A B}=-\overrightarrow{A B} \cdot \overrightarrow{A B}$
$\overrightarrow{B C} \cdot \overrightarrow{A B}+\overrightarrow{C A} \cdot \overrightarrow{A B}=-C^{2}$
$-a c \cos B-b c \cos A=-c^{2}$

$$
\begin{equation*}
0 \tag{i}
\end{equation*}
$$

Solved Ex.: If $\stackrel{a}{\mathrm{D}}, \mathrm{E}, \mathrm{F}$ are the mid-points of the sides of a triangle $A B C$, prove by vector method that area of

$\triangle D E F=\frac{1}{4}$ (area of $\triangle A B C$)
$\stackrel{\circ}{\circ}$
Solution. Taking A as the origin, let the position vectors of B and C be \vec{b} and \vec{c} respectively. Then, the
position vectors of D, E and F are $\frac{1}{2}(\vec{b}+\vec{c}), \frac{1}{2} \vec{c}$ and $\frac{1}{2} \vec{b}$ respectively.

$$
=\frac{1}{8}(\overrightarrow{\mathrm{~B}} \times \overrightarrow{\mathrm{c}})=\frac{1}{4}\left\{\frac{1}{2}(\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}})\right\}
$$

$$
\left.=\frac{1}{4} \text { (vector area of } \triangle \mathrm{ABC}\right) \quad \text { Hence, area of } \triangle \mathrm{DEF}=\frac{1}{4} \text { area of } \triangle \mathrm{ABC} \text {. }
$$

Solved Example: P, Q are the mid-points of the non-parallel sides $B C$ and $A D$ of a trapezium ABCD. Show that $\triangle A P D=\triangle C Q B$.
Solution. Let $\overrightarrow{A B}=\vec{b}$ and $\overrightarrow{A D}=\vec{d}$
Now $D C$ is parallel to $A B \Rightarrow$ there exists a acalar t sush that $\overrightarrow{D C}=t \overrightarrow{D B}=t \vec{b}$
$\therefore \quad \overrightarrow{A C}=\overrightarrow{A D}+\overrightarrow{D C}=\vec{d}+t \vec{b}$

The position vectors of P and Q are $\frac{1}{2}(\vec{b}+\vec{d}+t \vec{b})$ and $\frac{1}{2} \vec{d}$ respectively.

$$
\text { Now } \begin{aligned}
2 \Delta \overrightarrow{\mathrm{APD}} & =\overrightarrow{\mathrm{AP}} \times \overrightarrow{\mathrm{AD}} \\
& =\frac{1}{2}(\overrightarrow{\mathrm{~b}}+\overrightarrow{\mathrm{d}}+\mathrm{t} \overrightarrow{\mathrm{~b}}) \times \overrightarrow{\mathrm{d}}=\frac{1}{2}(1+\mathrm{t})(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{d}})
\end{aligned}
$$

Also $\quad 2 \Delta \overrightarrow{C Q B}=\overrightarrow{C Q} \times \overrightarrow{C B}=\left[\frac{1}{2} \vec{d}-(\vec{d}+t \vec{b}] \times[\vec{b}-(\vec{d}+t \vec{b})]\right.$

$$
=\left[-\frac{1}{2} d-t \vec{b}\right] \times[-d+(1-t) b]=-\frac{1}{2}(1-t) \vec{d} \times \vec{b}+t \vec{b} \times \vec{d}
$$

$$
=\frac{1}{2}(1-t+2 t) \vec{b} \times \vec{d}
$$

$$
=\frac{1}{2}(1+\mathrm{t}) \overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{d}} \quad=\quad 2 \Delta \overrightarrow{\mathrm{APD}}
$$

Hence the result.
page 41 of 77
Solved Example: Let \vec{u} and \vec{v} are unit vectors and \vec{w} is a vector such that $\vec{u} \times \vec{v}+\vec{u}=\vec{w}$ and $\vec{w} \times \vec{u}=\vec{v}$ then.: find the value of $[\vec{u} \vec{v} \vec{w}]$.
Solution. Given $\vec{u} \times \vec{v}+\vec{u}=\vec{w}$ and $\vec{w} \times \vec{u}=\vec{v}$

$$
\begin{array}{llll}
\Rightarrow & (\vec{u} \times \vec{v}+\vec{u}) \times \vec{u}=\vec{w} \times \vec{u} \Rightarrow & (\vec{u} \times \vec{v}) \times \vec{u}+\vec{u} \times \vec{u}=\vec{v} \quad(\text { as, } \vec{w} \times \vec{u}=\vec{v}) \\
\Rightarrow & (\vec{u} \cdot \vec{u}) \vec{v}-(v \cdot \vec{u}) \vec{u}+\vec{u} \times \vec{u}=\vec{v} & (\text { using } \vec{u} \cdot \vec{u}=1 \text { and } \vec{u} \times \vec{u}=0, \text { since unit vector) } \\
\Rightarrow & \vec{v}-(\vec{v} \cdot \vec{u}) \vec{u}=\vec{v} & \Rightarrow \quad(\vec{u} \cdot \vec{v}) \vec{u}=\overrightarrow{0} \\
\Rightarrow & \vec{u} \cdot \vec{v}=0 & (\text { as; } \vec{u} \neq 0) \quad \ldots \ldots \ldots \ldots . . \text { (i) }
\end{array}
$$

$\Rightarrow \quad \vec{u} .(\vec{v} \times \vec{w})$
$=\vec{u} .(\vec{v} \times(\vec{u} \times \vec{v}+\vec{u}))$
(given $\vec{w}=\vec{u} \times \vec{v}+u$)
$=\vec{u} .(\vec{v} \times(\vec{u} \times \vec{v})+\vec{v} \times \vec{u})$
$=\vec{u} .((\vec{v} \cdot \vec{v}) \vec{u}-(\vec{v} \cdot \vec{u}) \vec{v}+\vec{v} \times \vec{u})$
$=\vec{u} .\left(|\vec{v}|^{2} u-0+\vec{v} \times \vec{u}\right)$
(as; $\vec{u} . \vec{v}=0$ from (i))
$=|\vec{v}|^{2}(\vec{u}, \vec{u})-\vec{u} \cdot(\vec{v} \times \vec{u})$
$=|\vec{v}|^{2}|\vec{u}|^{2}-0$
(as; |uे $|=|\vec{v}|=1) \quad \therefore \quad[\vec{u} \vec{v} \vec{w}]=1$
Sol. Ex.: In any triangle, show that the perpendicular bisectors of the sides are concurrent.
Solution
Let $A B C$ be the triangle and D, E and F are respectively middle points of sides $B C, C A$ and $A B$ Let the perpendicular of D and E meet at O join $O F$. We are required to prove that $O F$ is \perp to $A B$. Let the position vectors of A, B, C with O as origin of reference be \vec{a}, \vec{b} and \bar{c} respectively.
$\therefore \overrightarrow{O D}=\frac{1}{2}(\vec{b}+\vec{c}), \overrightarrow{O E}=\frac{1}{2}(\vec{c}+\vec{a})$ and $\overrightarrow{O F}=\frac{1}{2}(\vec{a}+\vec{b})$
Also $\overrightarrow{B C}=\vec{c}-\vec{b}, \overrightarrow{C A}=\vec{a}-\vec{c}$ and $\overrightarrow{A B}=\vec{b}-\vec{a}$
Since OD $\perp B C, \frac{1}{2}(\vec{b}+\vec{c}) \cdot(\vec{c}-\vec{b})=0$
$\Rightarrow \mathrm{b}^{2}=\mathrm{c}^{2}$
Similarly $\frac{1}{2}(\vec{c}+\vec{a}) \cdot(\vec{a}+\vec{c})=0$
$\Rightarrow a^{2}=c^{2}$

from (i) and (ii) we have $a^{2}-b^{2}=0$

$$
\begin{equation*}
\Rightarrow(\vec{a}+\vec{b}) \cdot(\vec{b}+\vec{a})=0 \quad \Rightarrow \frac{1}{2}(\vec{b}+\vec{a}) \cdot(\vec{b}-\vec{a})=0 \tag{ii}
\end{equation*}
$$

Solved Example: A, B, C, D are four points in space. using vector methods, prove that
$A C^{2}+B D^{2}+A D^{2}+B C^{2} \geq A B^{2}+C D^{2}$ what is the implication of the sign of equaility.
Solution.: Let the position vector of A, B, C, D be $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} respectively then

$$
\begin{aligned}
A C^{2}+ & B D^{2}+A D^{2}+B C^{2}=(\vec{c}-\vec{a}) \cdot(\vec{c}-\vec{a})+(\vec{d}-\vec{b}) \cdot(\vec{d}-\vec{b})+(\vec{d}-\vec{a}) \cdot(\vec{d}-\vec{a})+(\vec{c}-\vec{b}) \cdot(\vec{c}-\vec{b}) \\
& =|\vec{c}|^{2}+|\vec{a}|^{2}-2 \vec{a} \cdot \vec{c}+|\vec{d}|^{2}+|\vec{b}|^{2}-2 \vec{d} \cdot \vec{b}+|\vec{d}|^{2}+|\vec{a}|^{2}-2 \vec{a} \cdot \vec{d}+|\vec{c}|^{2}+|\vec{b}|^{2}-2 \vec{b} \cdot \vec{c} \\
& =|\vec{a}|^{2}+|\vec{b}|^{2}-2 \vec{a} \cdot \vec{b}+|\vec{c}|^{2}+|\vec{d}|^{2}-2 \vec{c} \cdot \vec{d}+|\vec{a}|^{2}+|\vec{b}|^{2}+|\vec{c}|^{2}+|\vec{d}|^{2} \\
& \quad+2 \vec{a} \cdot \vec{b}+2 \vec{c} \cdot \vec{d}-2 \vec{a} \cdot \vec{c}-2 \vec{b} \cdot \vec{d}-2 \vec{a} \cdot \vec{d}-2 \vec{b} \cdot \vec{c} \\
& =(\vec{a}-\vec{b}) \cdot(\vec{a}-\vec{b})+(\vec{c}-\vec{d}) \cdot(\vec{c}-\vec{d})+(\vec{a}-\vec{b}-\vec{c}-\vec{d}) \geq A B^{2}+C D^{2} \\
& =A B^{2}+C D^{2}+(\vec{a}+\vec{b}-\vec{c}-\vec{d}) \cdot(\vec{a}+\vec{b}-\vec{c}-\vec{d}) \leq A B^{2}+C D^{2} \\
\therefore \quad & A C^{2}+B D^{2}+A D^{2}+B C^{2} \geq A B^{2}+C D^{2}
\end{aligned}
$$

for the sign of equality to hold, $\vec{a}+\vec{b}-\vec{c}-\vec{d}=0$

$$
\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{d}}-\overrightarrow{\mathrm{b}}
$$

$\Rightarrow \quad \overrightarrow{A C}$ and $\overrightarrow{B D}$ are collinear the four points A, B, C, D are collinear

