11. **Linear Combinations:**

Given a finite set of vectors \vec{a} , \vec{b} , \vec{c} ,..... then the vector $\vec{r} = x\vec{a} + y\vec{b} + z\vec{c}$ +...... is called a linear combination of $\vec{a}, \vec{b}, \vec{c}, \dots$ for any x, y, z.... $\in R$. We have the following results:

If \vec{a} , \vec{b} are non zero, non-collinear vectors then $x\vec{a} + y\vec{b} = x'\vec{a} + y'\vec{b} \Rightarrow x = x'; y = y'$

FundamentalTheorem: Let \vec{a}, \vec{b} be non zero, non collinear vectors. Then any vector \vec{r} coplanar with \vec{a} , \vec{b} can be expressed uniquely as a linear combination of \vec{a} , \vec{b} page 36

i.e. There exist some uniquly x, $y \in R$ such that $x\vec{a} + y\vec{b} = \vec{r}$.

If \vec{a} , \vec{b} , \vec{c} are non-zero, non-coplanar vectors then:

 $x\vec{a} + y\vec{b} + z\vec{c} = x'\vec{a} + y'\vec{b} + z'\vec{c} \implies x = x', y = y', z = z'$

Fundamental Theorem In Space: Let \vec{a} , \vec{b} , \vec{c} be non-zero, non-coplanar vectors in space. Then any we convector \vec{r} , can be uniquely expressed as a linear combination of \vec{a} , \vec{b} , \vec{c} i.e. There exist some unique x, y <u>9</u>8930 \in R such that $x\vec{a} + y\vec{b} + z\vec{c} = \vec{r}$.

If $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n$ are n non zero vectors, & k_1, k_2, \dots, k_n are n scalars & if the linea (e) combination $k_1\vec{x}_1 + k_2\vec{x}_2 + \dots + k_n\vec{x}_n = 0 \Longrightarrow k_1 = 0, k_2 = 0, \dots + k_n = 0$ then we say that 7779. vectors $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n$ are Linearly Independent Vectors.

If $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n$ are not Linearly Independent then they are said to be Linearly Dependent vectors. i.e If x_1, x_2, \dots, x_n are not LINEARLY INDEPENDENT then they are said to be LINEARLY DEPENDENT vectors. i.e. if $k_1\vec{x}_1 + k_2\vec{x}_2 + \dots + k_n\vec{x}_n = 0$ & if there exists at least one $k_r \neq 0$ then $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n$ are said to be be **N DEPENDENT.** :If $k_r \neq 0$; $k_1\vec{x}_1 + k_2\vec{x}_2 + k_3\vec{x}_3 + \dots + k_r\vec{x}_r + \dots + k_n\vec{x}_n = 0$ $-k_r\vec{x}_r = k_1\vec{x}_1 + k_2\vec{x}_2 + \dots + k_{r-1}.\vec{x}_{r-1} + k_{r+1}.\vec{x}_{r+1} + \dots + k_n\vec{x}_n$ $-k_r\frac{1}{k_r}\vec{x}_r = k_1\frac{1}{k_r}\vec{x}_1 + k_2\frac{1}{k_r}\vec{x}_2 + \dots + k_{r-1}.\frac{1}{k_r}\vec{x}_{r-1} + \dots + k_n\frac{1}{k_r}\vec{x}_n$ $i.e. \vec{x}_r$ is expressed as a linear combination of vectors. $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_{r-1}, \vec{x}_{r+1}, \dots, \vec{x}_n$ forms a linearly dependent set of vectors. : \Rightarrow If $\vec{a} = 3\hat{i} + 2\hat{j} + 5\hat{k}$ then \vec{a} is expressed as a LINEAR COMBINATION of vectors \hat{i} . \hat{i} . \hat{k} Also. \vec{a} . \hat{i} . \hat{i} LINEARLY DEPENDENT.

Note 1: If $k_r \neq 0$; $k_1 \vec{x}_1 + k_2 \vec{x}_2 + k_3 \vec{x}_3 + \dots + k_r \vec{x}_r + k_r \vec{x}_r$

$$-k_{r}\vec{x}_{r} = k_{1}\vec{x}_{1} + k_{2}\vec{x}_{2} + \dots + k_{r-1}\vec{x}_{r-1} + k_{r+1}\vec{x}_{r+1} + \dots + k_{n}\vec{x}_{n}\vec{x}_{n}$$
$$-k_{r}\frac{1}{k_{r}}\vec{x}_{r} = k_{1}\frac{1}{k_{r}}\vec{x}_{1} + k_{2}\frac{1}{k_{r}}\vec{x}_{2} + \dots + k_{r-1}\frac{1}{k_{r}}\vec{x}_{r-1} + \dots + k_{n}\frac{1}{k_{r}}\vec{x}_{n}$$

Note 2: \mathcal{P} If $\vec{a} = 3\hat{i} + 2\hat{j} + 5\hat{k}$ then \vec{a} is expressed as a Linear Combination of vectors \hat{i} , \hat{j} , \hat{k} Also, \vec{a} , \hat{i} , \hat{j} . بک \hat{k} form a linearly dependent set of vectors. In general, every set of four vectors is a linearly dependent \hat{k} system. $K_1\hat{i} + K_2\hat{j} + K_3\hat{k} = 0 \Longrightarrow K_1 = K_2 = K_3 = 0$ v \hat{i} , \hat{j} , \hat{k} are **Linearly Independent** set of vectors. For Two vectors $\vec{a} \otimes \vec{b}$ are linearly dependent $\Rightarrow \vec{a}$ is parallel to \vec{b} i.e. $\vec{a} \times \vec{b} = 0 \Rightarrow$ linear dependence $\vec{c} \otimes \vec{c} \otimes \vec{c$ đ

of $\vec{a} \& \vec{b}$. Conversely if $\vec{a} \times \vec{b} \neq 0$ then $\vec{a} \& \vec{b}$ are linearly independent.

Ľ.

If three vectors \vec{a} , \vec{b} , \vec{c} are linearly dependent, then they are coplanar i.e. $[\vec{a}, \vec{b}, \vec{c}] = 0$, conversely, by if $[\vec{a}, \vec{b}, \vec{c}] \neq 0$, then the vectors are linearly independent. **If Example:** Given A that the points $\vec{a} - 2\vec{b} + 3\vec{c}$, $2\vec{a} + 3\vec{b} - 4\vec{c}$, $-7\vec{b} + 10\vec{c}$, A, B, C have the position vector prove that vectors \overrightarrow{AB} and \overrightarrow{AC} are linearly dependent. **If Example:** Given A that the points $\vec{a} - 2\vec{b} + 3\vec{c}$, $2\vec{a} + 3\vec{b} - 4\vec{c}$, $-7\vec{b} + 10\vec{c}$, A, B, C have the position vector prove that vectors \overrightarrow{AB} and \overrightarrow{AC} are linearly dependent. **If** $\overrightarrow{AAB} = 2\vec{b} + 3\vec{c}$, $\overrightarrow{OB} = 2\vec{a} + 3\vec{b} - 4\vec{c}$ and $\overrightarrow{OC} = -7\vec{b} + 10\vec{c}$ Now $\overrightarrow{AB} = p.v.$ of B - p.v. of A $= \overrightarrow{OB} - \overrightarrow{OA} = (\vec{a} + 5\vec{b} - 7\vec{c}) = -\overrightarrow{AB}$ $\therefore \overrightarrow{AC} = \lambda \overrightarrow{AB}$ where $\lambda = -1$. Hence \overrightarrow{AB} and \overrightarrow{AC} are linearly dependent Solved Example: Solution.

$$\overrightarrow{OA} = \overrightarrow{a} - 2\overrightarrow{b} + 3\overrightarrow{c}$$
, $\overrightarrow{OB} = 2\overrightarrow{a} + 3\overrightarrow{b} - 4\overrightarrow{c}$ and $\overrightarrow{OC} = -7\overrightarrow{b} + 10\overrightarrow{c}$
Now $\overrightarrow{AB} = p.v.$ of $B - p.v.$ of A

Prove that the vectors $5\vec{a} + 6\vec{b} + 7\vec{c}$, $7\vec{a} - 8\vec{b} + 9\vec{c}$ and $3\vec{a} + 20\vec{b} + 5\vec{c}$ are linearly Solved Example: dependent \vec{a} , \vec{b} , \vec{c} being linearly independent vectors.

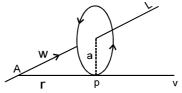
Solution. We know that if these vectors are linearly dependent , then we can express one of them as a linear combination of the other two.

Now let us assume that the given vector are coplanar, then we can write $5\vec{a} + 6\vec{b} + 7\vec{c} = \ell(7\vec{a} - 8\vec{b} + 9\vec{c}) + m(3\vec{a} + 20\vec{b} + 5\vec{c})$ where ℓ , m are scalars E Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com Comparing the coefficients of \vec{a} , b and \vec{c} on both sides of the equation $5 = 7\ell + 3$ 7 = 9 ℓ + 5m $6 = -8\ell + 20 \text{ m}$(ii) .(i) .(iii) From (i) and (iii) we get oage 37 of 77 $\ell =$ = m which evidently satisfies (ii) equation too. $\overline{2}$ Hence the given vectors are linearly dependent. Self Practice Problems : Does there exist scalars u, v, w such that $\vec{ue}_1 + \vec{ve}_2 + \vec{we}_3 = \vec{i}$ where $\vec{e}_1 = \vec{k}$, $\vec{e}_2 = \vec{j} + \vec{k}$, $\vec{e}_3 = -\vec{j} + 2\vec{k}$ 1. Ans. No Consider a base \vec{a} , \vec{b} , \vec{c} and a vector $-2\vec{a}+3\vec{b}-\vec{c}$. Compute the co-ordinates of this vector relatively to _____ 2. 58881 the base p, q, r where $\vec{p} = 2\vec{a} - 3\vec{b}$, $\vec{q} = \vec{a} - 2\vec{b} + \vec{c}$, $\vec{r} = -3\vec{a} + \vec{b} + 2\vec{c}$. Ans. (0, -7/5, 1/5)If \vec{a} and \vec{b} are non-collinear vectors and $\vec{A} = (x + 4y)\vec{a} + (2x + y + 1)\vec{b}$ and $\vec{B} = (y - 2x + 2)\vec{a}$ 3. 930 (2x - 3y - 1) \vec{b} , find x and y such that $3\vec{A} = 2\vec{B}$. Ans. x = 2, y = -1If vectors $\vec{a}, \vec{b}, \vec{c}$ be linearly independent, then show that :(i) $\vec{a} - 2\vec{b} + 3\vec{c}$, $-2\vec{a} + 3\vec{b} - 4\vec{c}$, $-\vec{b} + 2\vec{c}$ are \vec{b} 4. (ii) $\vec{a} - 3\vec{b} + 2\vec{c}$, $-2\vec{a} - 4\vec{b} - \vec{c}$, $3a + 2\vec{b} - \vec{c}$ are linearly independent. linearly dependent Given that $\hat{i} - \hat{j}$, $\hat{i} - 2\hat{j}$ are two vectors. Find a unit vector coplanar with these vectors and perpendicular 5. to the first vector $\hat{i} - \hat{j}$. Find also the unit vector which is perpendicular to the plane of the two given 903 vectors. Do you thus obtain an orthonormal triad? Ans. (i + j); k; Yes ./2 903 If with reference to a right handed system of mutually perpendicular unit vectors \hat{i} , \hat{j} , \hat{k} $\vec{\alpha} = 3\vec{i}$ $\vec{\beta} = 2\vec{i} + \vec{j} - 3\vec{k}$ express $\vec{\beta}$ in the form $\vec{\beta} = \vec{\beta}_1 + \vec{\beta}_2$ where $\vec{\beta}_1$ is parallel to $\vec{\alpha} & \vec{\beta}_2$ is perpendicular to $\vec{\alpha}$ **Bhopal Phone** $\frac{1}{2}\vec{j}$, $\vec{\beta}_2 = \frac{1}{2}\vec{i} + \frac{3}{2}\vec{j} - 3\vec{k}$ Ans. Prove that a vector \vec{r} in space can be expressed linearly in terms of three non-coplanar, non-nu vectors $\vec{a}, \vec{b}, \vec{c}$ in the form $\vec{r} = \frac{[\vec{r} \ \vec{b} \ \vec{c}] \vec{a} + [\vec{r} \ \vec{c} \ \vec{a}] \vec{b} + [\vec{r} \ \vec{a} \ \vec{b}] \vec{c}$ Sir), Note: Test Of Collinearity: Three points A,B,C with position vectors \vec{a} , b, \vec{c} respectively are collinear, if & only if there exist scalars x y z not all zero simultaneously such that; $x\vec{a} + y\vec{b} + z\vec{c} = 0$, where x + y + z = 0.ല് Four points A, B, C, D with position vectors $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ respectively are coplanar Note: Test Of Coplanarity: if and only if there exist scalars x, y, z, w not all zero simultaneously such that $x\vec{a} + y\vec{b} + z\vec{c} + w\vec{d} = 0$ where, x + y + z + w = 0. where, x + y + z + w = 0. Kal A Show that the vectors $2\vec{a} - \vec{b} + 3\vec{c}$, $\vec{a} + \vec{b} - 2\vec{c}$ and $\vec{a} + \vec{b} - 3\vec{c}$ are non-coplanar vectors Solved Example Let, the given vectors be coplanar. Solution. È Then one of the given vectors is expressible in terms of the other two. Maths : Suhag $2\vec{a} - \vec{b} + 3\vec{c} = x (\vec{a} + \vec{b} - 2\vec{c}) + y (\vec{a} + \vec{b} - 3\vec{c})$, for some scalars x and y. Let Classes, **Solved Example:** Prove that four points $2\vec{a}+3\vec{b}-\vec{c}$, $\vec{a}-2b+3\vec{c}$, $3\vec{a}+4b-2\vec{c}$ and $\vec{a}-6b+6\vec{c}$ are coplanar Solution. Let the given four points be P, Q, R and S respectively. These points are coplanar if the vectors PQ PR and PS are coplanar. These vectors are coplanar iff one of them can be expressed as a linear combination of other two. So, let Teko $\overrightarrow{PQ} = \overrightarrow{X} \overrightarrow{PB} + \overrightarrow{Y} \overrightarrow{PS}$ $\Rightarrow_{-\vec{a}-5\vec{b}+4\vec{c}} = x (\vec{a}+\vec{b}-\vec{c}) + y (-\vec{a}-9\vec{b}-7\vec{c}) \Rightarrow_{-\vec{a}-5\vec{b}+4\vec{c}} = (x-y) \vec{a} + (x-9y) \vec{b} + (-x+7y) \vec{c}$ $\Rightarrow x - y = -1, x - 9y = -5, -x + 7y = 4$ [Equating coeff. of $\vec{a}, \vec{b}, \vec{c}$ on both sides] Solving the first of these three equations, we get $x = -\frac{1}{2}$, $y = \frac{1}{2}$

These values also satisfy the third equation. Hence, the given four points are coplanar. **Self Practice Problems :**

- 1. If, $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are any four vectors in 3-dimensional space with the same initial point and such that $3\vec{a} - 2\vec{b} + \vec{c} - 2\vec{d} = \vec{0}$, show that the terminal A, B, C, D of these vectors are coplanar. Find the point at which AC and BD meet. Find the ratio in which P divides AC and BD.
- Show that the vector $\vec{a} \vec{b} + \vec{c}$, $\vec{b} \vec{c} \vec{a}$ and $2\vec{a} 3\vec{b} 4\vec{c}$ are non-coplanar, where $\vec{a}, \vec{b}, \vec{c}$, are any noncoplanar vectors.
 - Find the value of λ for which the four points with position vectors $-\hat{j}-\hat{k}$, $4\hat{i}+5\hat{j}+\lambda\hat{k}$. $3\hat{i}+9\hat{j}+4\hat{k}$ and \hat{a} 38 $-4\hat{i}+4\hat{j}+4\hat{k}$ are coplanar. $\lambda = 1$ Ans.

page 12. **Application Of Vectors:** (a) Work done against a constant force \vec{F} over a displacement \vec{s} The tangential velocity \vec{V} of a body moving in a circle is given is defined as $\vec{W} = \vec{F} \cdot \vec{s}$ (b) by $\vec{V} = \vec{w} \times \vec{r}$ where \vec{r} is the pv of the point P. 0 98930 5888



- 7779, The moment of \vec{F} about 'O' is defined as $\vec{M} = \vec{r} \times \vec{F}$ where \vec{r} is the pv of P wrt 'O'. The direction of \vec{M}

is along the normal to the plane OPN such that \vec{r} , $\vec{F} & \vec{M}$ form a right handed system. Moment of the couple = $(\vec{r}_1 - \vec{r}_2) \times \vec{F}$ where $\vec{r}_1 & \vec{r}_2$ are pv's of the point of the application of the forces $\vec{F} & -\vec{F}$. $\vec{F} & -\vec{F}$. **Example:** Forces of magnitudes 5 and 3 units acting in the directions $6\hat{i} + 2\hat{j} + 3\hat{k}$ and $3\hat{i} + 2\hat{j} + 6\hat{k}$ respectively act on a particle which is displaced from the point (2, 2, -1) to (4, 3, 1). Find the work done by the forces. Solved Example: done by the forces.

tion. Let
$$\vec{F}$$
 be the resultant force and \vec{d} be the displacement vector. Then,
 $\vec{F} = 5\frac{(6\hat{i}+2\hat{j}+3\hat{k})}{\sqrt{36+4+9}} + 3\frac{(3\hat{i}+2\hat{j}+6\hat{k})}{\sqrt{9+4+36}} = \frac{1}{7}(39\hat{i}+4\hat{j}+33\hat{k})$
and, $\vec{d} = (4\hat{i}+3\hat{j}+\hat{k}) - (2\hat{i}+2\hat{j}-\hat{k}) = 2\hat{i}+\hat{j}+2\hat{k}$
 \therefore Total work done = $\vec{F} \cdot \vec{d} = \frac{1}{7}(39\hat{i}+4\hat{j}+33\hat{k}) \cdot (2\hat{i}+\hat{j}+2\hat{k})$
 $= \frac{1}{7}(78+4+66) = \frac{148}{7}$ units.
Practice Problems :1. A point describes a circle uniformly in the \hat{j} , \hat{j} plane taking 12 seconds to be complete one revolution. If its initial position vector relative to the centre is \hat{j} , and the rotation is from \hat{j} , $\hat{i} \circ \hat{j}$, find the position vector at the end of 7 seconds. Also find the velocity vector. Ans. $1 / 2$
 $(\hat{j}-\sqrt{3}\hat{i})$, $p/12(\hat{i}-\sqrt{3}\hat{j})$
The force represented by $3\hat{i}+2\hat{k}$ is acting through the point $5\hat{i}+4\hat{j}-3\hat{k}$. Find its moment about the point $\hat{i}+3\hat{j}+\hat{k}$.
Find the moment of the comple formed by the forces $5\hat{i}+\hat{k}$ and $-5\hat{i}-\hat{k}$ acting at the points $(9, -1, 2)$ and $(3, -2, 1)$ respectively
Miscellaneous Solved Examples
ed Example: Show that the points A, B, C with position vectors $2\hat{i}-\hat{j}+\hat{k}$, $\hat{i}-3\hat{j}-5\hat{k}$ and $3\hat{i}-4\hat{j}-4\hat{k}$
respectively, are the vertices of a right angled triangle. Also find the remaining angles of the triangle.
tion. We have, \vec{AB} = Position vector of B – Position vector of A

$$= (\hat{i} - 3\hat{j} - 5\hat{k}) - (2\hat{i} - \hat{j} + \hat{k}) = -\hat{i} - 2\hat{j} - 6\hat{k}$$

= Position vector of C – Position vector of B BĆ

$$\begin{aligned} &= (3\hat{i} - 4\hat{i}) - (\hat{i} - 3\hat{j} - 5\hat{k}) = 2\hat{i} - \hat{j} + \hat{k} \\ \text{and,} \quad & (A = Position vector of A = Position vector of C \\ &= (2\hat{i} - \hat{j} + \hat{k}) - (3\hat{i} - 4\hat{j} - 4\hat{k}) = -\hat{i} + 3\hat{j} + 5\hat{k} \\ & \text{Since } \overline{AB} + \overline{BC} + \overline{CA} = (-1-\hat{z}) = 6\hat{k} + (-\hat{i} - 3\hat{j} + 5\hat{k}) = 0 \\ & \text{So, A, B and C are the vertices of a triangle.} \\ & \text{Now,} \quad \underline{BC} \cdot \overline{CA} = (2\hat{i} - \hat{j} + \hat{k}) - (\hat{i} + 3\hat{j} + 5\hat{k}) = -2 - 3 + 5 = 0 \\ & \Rightarrow \quad \underline{BC} \perp \overline{CA} = 0 \\ & 2 - 2BCA = \frac{\pi}{2} \quad \text{Hence, ABC is a right angled triangle.} \\ & \text{Since a is the angle between the vectors \overline{AB} and \overline{AC} . Therefore $\cos A = \frac{\overline{AB} \cdot \overline{AC}}{|\overline{AB}||\overline{AC}|} = \frac{(-\hat{i} - 2\hat{j} - 6\hat{k}) \cdot (\hat{i} - 3\hat{j} - 5\hat{k})}{\sqrt{(-1)^2 + (-2)^2 + (-6)^2 + \sqrt{(^2)^2 + (-5)^2}}} \\ & = \frac{-1+6+30}{\sqrt{1+4+36\sqrt{(1+9+25)}}} = \frac{35}{\sqrt{41\sqrt{35}}} = \sqrt{\frac{35}{\sqrt{41}}} \qquad A = \cos^{-1} \sqrt{\frac{56}{41}} \\ & \cos B = \frac{\overline{BA}}{|\overline{BA}||\overline{BC}|} = \frac{\hat{i} + 2\hat{i} + 6\hat{k} \cdot (2\hat{i} - \hat{j} + k)}{\sqrt{(^2+2^2+6^2\sqrt{2^2} + (-1)^2 + (-6)^2 + \sqrt{(^2+2^2+6^2\sqrt{2^2} + (-1)^2 + (-6)^2} + \sqrt{(^2+2^2+6^2\sqrt{2^2} + (-6)^2/2} + \sqrt{(^2+2^2+$$$

FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com

The position vectors of P and Q are $\frac{1}{2}$ ($\vec{b} + \vec{d} + t\vec{b}$) and $\frac{1}{2}\vec{d}$ respectively. $2\Delta \overrightarrow{\text{APD}} = \overrightarrow{\text{AP}} \times \overrightarrow{\text{AD}}$ Now $= \frac{1}{2} (\vec{b} + \vec{d} + t \vec{b}) \times \vec{d} = \frac{1}{2} (1 + t) (\vec{b} \times \vec{d})$ $2\Delta \overrightarrow{CQB} = \overrightarrow{CQ} \times \overrightarrow{CB} = \begin{bmatrix} \frac{1}{2} \vec{d} - (\vec{d} + t\vec{b}) \end{bmatrix} \times [\vec{b} - (\vec{d} + t\vec{b})]$ page 41 of 77 Also $-\frac{1}{2}d-t\vec{b} \left| \times \left[-d + (1-t)b \right] \right|_{=} -\frac{1}{2}(1-t)\vec{d}\times\vec{b} + t\vec{b}\times\vec{d}$ $=\frac{1}{2}(1-t+2t)\vec{b}\times\vec{d}$ $=\frac{1}{2}(1+t)\vec{b}\times\vec{d}$ 2∆APD Hence the result. Solved Example: Let \vec{u} and \vec{v} are unit vectors and \vec{w} is a vector such that $\vec{u} \times \vec{v} + \vec{u} = \vec{w}$ and $\vec{w} \times \vec{u} = \vec{v}$ then, find the value of $[\vec{u} \ \vec{v} \ \vec{w}]$. Solution. Given $\vec{u} \times \vec{v} + \vec{u} = \vec{w}$ and $\vec{w} \times \vec{u} = \vec{v}$ $\Rightarrow (\vec{u} \times \vec{v} + \vec{u}) \times \vec{u} = \vec{w} \times \vec{u} \Rightarrow (\vec{u} \times \vec{v}) \times \vec{u} + \vec{u} \times \vec{u} = \vec{v}$ (as, $\vec{w} \times \vec{u} = \vec{v}$) $\Rightarrow (\vec{u} . \vec{u}) \ \vec{v} - (v . \vec{u}) \ \vec{u} + \vec{u} \times \vec{u} = \vec{v}$ (using $\vec{u} . \vec{u} = 1$ and $\vec{u} \times \vec{u} = 0$, since unit vector) $\Rightarrow \vec{v} - (\vec{v} . \vec{u}) \ \vec{u} = \vec{v}$ $\Rightarrow (\vec{u} . \vec{v}) \ \vec{u} = \vec{0}$ Sir), Bhopal Phone : 0 903 903 7779, $\vec{u} \cdot \vec{v} = 0$ $(as; \vec{u} \neq 0)$ \Rightarrow(i) \Rightarrow \vec{u} . $(\vec{v} \times \vec{w})$ (given $\vec{w} = \vec{u} \times \vec{v} + u$) $= \vec{u} \cdot (\vec{v} \times (\vec{u} \times \vec{v} + \vec{u}))$ $= \vec{u} \cdot (\vec{v} \times (\vec{u} \times \vec{v}) + \vec{v} \times \vec{u})$ $= \vec{u} . ((\vec{v} . \vec{v}) \vec{u} - (\vec{v} . \vec{u}) \vec{v} + \vec{v} \times \vec{u})$ $= \vec{u} \cdot (|\vec{v}|^2 u - 0 + \vec{v} \times \vec{u})$ (as; $\vec{u} \cdot \vec{v} = 0$ from (i)) $= |\vec{v}|^2 (\vec{u} \cdot \vec{u}) - \vec{u} \cdot (\vec{v} \times \vec{u})$ $= |\vec{v}|^2 |\vec{u}|^2 - 0$ $(as, |\vec{u} \cdot \vec{v} \cdot \vec{u}| = 0)$ $\begin{array}{cccc} = 1 & (as; |\vec{u}| = |\vec{v}| = 1) & \therefore & [\vec{u} \ \vec{v} \ \vec{w}] = 1 \\ \hline \mbox{Sol. Ex.: In any triangle, show that the perpendicular bisectors of the sides are concurrent.} \\ \hline \mbox{Solution.} & Let ABC be the triangle and D, E and F are respectively middle points of sides BC, CA and AB. Let the perpendicular of D and E meet at O join OF. We are required to prove that OF is <math>\perp$ to AB. Let the position vectors of A, B, C with O as origin of reference be \vec{a} , \vec{b} and \vec{c} respectively. $(\vec{b} + \vec{c}), \ \overrightarrow{OE} = \frac{1}{2} (\vec{c} + \vec{a}) \text{ and } \overrightarrow{OF} = \frac{1}{2} (\vec{a} + \vec{b})$.: OD = Also $\overrightarrow{BC} = \overrightarrow{c} - \overrightarrow{b}$, $\overrightarrow{CA} = \overrightarrow{a} - \overrightarrow{c}$ and $\overrightarrow{AB} = \overrightarrow{b} - \overrightarrow{c}$ a Ч. Since OD \perp BC, $\frac{1}{2}(\vec{b} + \vec{c}) . (\vec{c} - \vec{b}) = 0$ Ē $\Rightarrow b^2 = c^2$ Teko Classes, Maths : Suhag R. Kariya (S. $\frac{1}{2}(\vec{c} + \vec{a}).(\vec{a} + \vec{c}) = 0$ Similarly D $\Rightarrow a^2 = c^2$ from (i) and (ii) we have $a^2 - b^2 = 0$ $\Rightarrow \frac{1}{2}(\vec{b} + \vec{a}) \cdot (\vec{b} - \vec{a}) = 0$ \Rightarrow (\vec{a} + b). (b + \vec{a}) = 0 **Solved Example:** A, B, C, D are four points in space. using vector methods, prove that $AC^2 + BD^2 + AD^2 + BC^2 \ge AB^2 + CD^2$ what is the implication of the sign of equality. **Solution.:** Let the position vector of A, B, C, D be \vec{a} , \vec{b} , \vec{c} and \vec{d} respectively then $AC^{2} + BD^{2} + AD^{2} + BC^{2} = (\vec{c} - \vec{a}) \cdot (\vec{c} - \vec{a}) + (\vec{d} - \vec{b}) \cdot (\vec{d} - \vec{a}) \cdot (\vec{d} - \vec{a}) + (\vec{c} - \vec{b}) \cdot (\vec{c} - \vec{b})$ $= |\vec{c}|^{2} + |\vec{a}|^{2} - 2\vec{a}.\vec{c} + |\vec{d}|^{2} + |\vec{b}|^{2} - 2\vec{d}.\vec{b} + |\vec{d}|^{2} + |\vec{a}|^{2} - 2\vec{a}.\vec{d} + |\vec{c}|^{2} + |\vec{b}|^{2} - 2\vec{b}.$ $= |\vec{a}|^{2} + |\vec{b}|^{2} - 2\vec{a}.\vec{b} + |\vec{c}|^{2} + |\vec{d}|^{2} - 2\vec{c}.\vec{d} + |\vec{a}|^{2} + |\vec{b}|^{2} + |\vec{c}|^{2} + |\vec{d}|^{2}$ $+ 2\vec{a}.\vec{b} + 2\vec{c}.\vec{d} - 2\vec{a}.\vec{c} - 2\vec{b}.\vec{d} - 2\vec{a}.\vec{d} - 2\vec{b}.\vec{c}$ $= (\vec{a} - \vec{b}) \cdot (\vec{a} - \vec{b}) + (\vec{c} - \vec{d}) \cdot (\vec{c} - \vec{d}) + (\vec{a} - \vec{b} - \vec{c} - \vec{d}) \ge AB^2 + CD^2$ $= AB^{2} + CD^{2} + (\vec{a} + \vec{b} - \vec{c} - \vec{d}) \cdot (\vec{a} + \vec{b} - \vec{c} - \vec{d}) \le AB^{2} + CD^{2}$ $AC^2 + BD^2 + AD^2 + BC^2 \ge AB^2 + CD^2$ *.*.. for the sign of equality to hold, $\vec{a} + \vec{b} - \vec{c} - \vec{d} = 0$ $\vec{a} - \vec{c} = \vec{d} - \vec{b}$ AC and \overrightarrow{BD} are collinear the four points A, B, C, D are collinear \Rightarrow

FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com