DEFINITIONS: A VECTOR may be described as a quantity having both magnitude & direction. A

vector is generally represented by a directed line segment, say AB. A is called the **initial point** & B is

called the **terminal point**. The magnitude of vector \overrightarrow{AB} is expressed by $|\overrightarrow{AB}|$

ZERO VECTOR a vector of zero magnitude i.e. which has the same initial & terminal point, is called a 5 **ZERO VECTOR.** It is denoted by O.

Unit Vector a vector of unit magnitude in direction of a vector \vec{a} is called unit vector along \vec{a} and is Θ denoted by â symbolically

EQUAL VECTORS two vectors are said to be equal if they have the same magnitude, direction & represent the same physical quantity.

Collinear Vectors two vectors are said to be collinear if their directed line segments are paralleled.

disregards to their direction. Collinear vectors are also called **Parallel Vectors**. If they have the same direction they are named as like vectors otherwise unlike vectors.

Simbolically, two non zero vectors \vec{a} and \vec{b} are collinear if and only if, \vec{a} =K \vec{b} ,

Simbolically, two non zero vectors \vec{a} and \vec{b} are collinear if and only if, \vec{a} =Kb, where $K \in R$

COPLANAR VECTORS a given number of vectors are called coplanar if their line segments are all parallel to the same plane. Note that "Two Vectors Are Always Coplanar".

0

۷.

ď

Position Vector let O be a fixed origin, then the position vector of a point P is the vector OP $\vec{a} \& \vec{b}$ & position vectors of two point A and B, then, 903 $AB = b - \vec{a} = pv \text{ of } B - pv \text{ of } A.$

VECTOR ADDITION: If two vectors $\vec{a} & \vec{b}$ are represented by OA&OB, then their

sum $\vec{a} + \vec{b}$ is a vector represented by \vec{OC} , where OC is the diagonal of the parallelogram OACB. $\vec{a} + \vec{b} = \vec{b} + \vec{a}$ (commutative) $\vec{a} + \vec{b} = \vec{b} + \vec{a}$ (commutative) $\vec{a} + \vec{b} = \vec{a} + (\vec{b} + \vec{c})$ (associativity) $\vec{a} + \vec{0} = \vec{a} = \vec{0} + \vec{a}$ $\vec{a} + (-\vec{a}) = \vec{0} = (-\vec{a}) + \vec{a}$ MULTIPLICATION OF VECTOR BY SCALARS:

If \vec{a} is a vector & m is a scalar, then m \vec{a} is a vector parallel to \vec{a} whose modulus is $|\vec{a}|$ times that of \vec{a} . This multiplication is called SCALAR MULTIPLICATION 16 \vec{a} \vec{a} \vec{b} \vec{c} $\vec{$ \vec{a} . This multiplication is called Scalar Multiplication. If \vec{a} & b are vectors & m, n are scalars, then

$$m(\vec{a})=(\vec{a})m=m\vec{a}$$
 $m(n\vec{a})=n(m\vec{a})=(mn)\vec{a}$ $m(\vec{a}+\vec{b})=m\vec{a}+m\vec{b}$

SECTION FORMULA:

<u>(v</u>

& \vec{b} are the position vectors of two points A & B then the p.v. of a point which divides AB in the \vec{m} :

m: n is given by: $\vec{r} = \frac{n\vec{a} + m\vec{b}}{m+n}$. Note p.v. of mid point of AB = $\frac{\vec{a} + \vec{b}}{2}$.

ECTION COSINES:

DIRECTION COSINES:

Let $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ the angles which this vector makes with the +ve directions OX,OY & OZ are called DIRECTION ANGLES & their cosines are called the DIRECTION COSINES. $\cos\alpha = \frac{a_1}{|\vec{a}|} , \cos\beta = \frac{a_2}{|\vec{a}|} , \cos\Gamma = \frac{a_3}{|\vec{a}|} . \text{Note that, } \cos^2\alpha + \cos^2\beta + \cos^2\Gamma = 1$ VECTOR EQUATION OF A LINE:

Parametric vector equation of a line passing through two point A(\vec{a}) & B(\vec{b}) is given by, $\vec{r} = \vec{a} + t(\vec{b} - \vec{a})$ where t is a parameter. If the line passes through the point A(\vec{a}) & is parallel to the vector \vec{b} then its graph of the point A(\vec{a}) and the point A(\vec{a}) are proposed by the point A(\vec{a}) and the point A(\vec{a}) are proposed by the point A(\vec{a}) and the point A(\vec{a}) are proposed by the point A(\vec{a}) and the point A(\vec{a}) are proposed by the point A(\vec{a}) and the point A(\vec{a}) are proposed by the point A(\vec{a}) and the point A(\vec{a}) are proposed by the point A(\vec{a}) and the point A(\vec{a}) are proposed by the point A(\vec{a}) and the point A(\vec{a}) are proposed by the pro

page 43 of 77

Note that the equations of the bisectors of the angles between the lines $\vec{r} = \vec{a} + \lambda \vec{b} \& \vec{r} = \vec{a} + \mu \vec{c}$ is: $\vec{r} = \vec{a} + t(\hat{b} + \hat{c}) \& \vec{r} = \vec{a} + p(\hat{c} - \hat{b}).$

- 0 98930 58881.

Note : (i)

- (ii)
- (iii)
- (iv)
- right handed screw system.

```
Lagranges Identity: for any two vectors \vec{a} & \vec{b}; (\vec{a} \times \vec{b})^2 = |\vec{a}|^2 |\vec{b}|^2 - (\vec{a} \cdot \vec{b})^2 = \begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} \\ \vec{a} \cdot \vec{b} & \vec{b} \cdot \vec{b} \end{vmatrix}
(ii)
```

Formulation of vector product in terms of scalar product: (iii)

The vector product $\vec{a} \times \vec{b}$ is the vector \vec{c} , such that

(i)
$$|\vec{c}| = \sqrt{\vec{a}^2 \vec{b}^2 - (\vec{a} \cdot \vec{b})^2}$$

(ii)
$$\vec{c} \cdot \vec{a} = 0$$
; $\vec{c} \cdot \vec{b} = 0$ and

(iii) \vec{a} , \vec{b} , \vec{c} form a right handed system

 $\vec{a} \times \vec{b} = 0 \Leftrightarrow \vec{a} \& \vec{b}$ are parallel (collinear) $(\vec{a} \neq 0, \vec{b} \neq 0)$ i.e. $\vec{a} = K\vec{b}$, where K is a scalar.

(not commutative) $\vec{a} \times \vec{b} \neq \vec{b} \times \vec{a}$

- $(m\vec{a}) \times \vec{b} = \vec{a} \times (m\vec{b}) = m(\vec{a} \times \vec{b})$ where m is a scalar.
- $\vec{a} \times (\vec{b} + \vec{c}) = (\vec{a} \times \vec{b}) + (\vec{a} \times \vec{c})$ (distributive)
- $\hat{\mathbf{i}} \times \hat{\mathbf{i}} = \hat{\mathbf{j}} \times \hat{\mathbf{j}} = \hat{\mathbf{k}} \times \hat{\mathbf{k}} = 0$

$$\hat{i} \times \hat{j} = \hat{k}, \ \hat{j} \times \hat{k} = \hat{i}, \ \hat{k} \times \hat{i} = \hat{j}$$

(v)
$$\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$$
 & $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ then $\vec{a} \times \vec{b} = \begin{vmatrix} 1 & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$

- Geometrically $|\vec{a} \times \vec{b}|$ = area of the parallelogram whose two adjacent sides are (vi) represented by $\vec{a} \& b$
- Unit vector perpendicular to the plane of $\vec{a} \& \vec{b}$ is $\hat{n} = \pm \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$ (vii)
 - A vector of magnitude 'r' & perpendicular to the palne of $\vec{a} \& \vec{b}$ is \pm
 - If θ is the angle between $\vec{a} \& \vec{b}$ then $\sin \theta =$
- (viii) Vector area
 - If $\vec{a}, \vec{b} \& \vec{c}$ are the pv's of 3 points A, B & C then the vector area of triangle ABC = $\left[\vec{a}\,x\,\vec{b}\,+\,\vec{b}\,x\,\vec{c}\,+\,\vec{c}\,x\,\vec{a}\right]$. The points A, B & C are collinear if $\vec{a}\,x\,\vec{b}\,+\,\vec{b}\,x\,\vec{c}\,+\,\vec{c}\,x\,\vec{a}=0$
 - Area of any quadrilateral whose diagonal vectors are $\vec{\mathbf{d}}_1 \& \vec{\mathbf{d}}_2$ is given by $\frac{1}{2} |\vec{\mathbf{d}}_1 \times \vec{\mathbf{d}}_2|$
- SHORTEST DISTANCE BETWEEN TWO LINES: 10. If two lines in space intersect at a point, then obviously the shortest distance between them is zero. Lines

which do not intersect & are also not parallel are called **SKEW LINES**. For Skew lines the direction of the shortest distance would be perpendicular to both the lines. The magnitude of the shortest distance is a long the direction of the line of shortest distance.

vector would be equal to that of the projection of AB along the direction of the line of shortest distance,

$$\overrightarrow{LM} \text{ is parallel to } \overrightarrow{p} \times \overrightarrow{q} \text{ i.e. } \overrightarrow{LM} = \begin{vmatrix} \overrightarrow{Projection of AB on LM} \end{vmatrix}$$

$$= \begin{vmatrix} \overrightarrow{AB} \cdot (\overrightarrow{p} \times \overrightarrow{q}) \\ \overrightarrow{p} \times \overrightarrow{q} \end{vmatrix} = \begin{vmatrix} (\overrightarrow{b} - \overrightarrow{a}) \cdot (\overrightarrow{p} \times \overrightarrow{q}) \\ |\overrightarrow{p} \times \overrightarrow{q}| \end{vmatrix}$$

The two lines directed along \vec{p} & \vec{q} will intersect only if shortest distance = 0 i.e.

 $(\vec{b} - \vec{a}) \cdot (\vec{p} \times \vec{q}) = 0$ i.e. $(\vec{b} - \vec{a})$ lies in the plane containing $\vec{p} \& \vec{q} : \Rightarrow [(\vec{b} - \vec{a}) \ \vec{p} \ \vec{q}] = 0$.

- FREE Download Study Package from website:www.TekoClasses.com & www.MathsBySuhag.com If two lines are given by $\vec{r}_1 = \vec{a}_1 + K\vec{b}$ & $\vec{r}_2 = \vec{a}_2 + K\vec{b}$ i.e. they are parallel then, $d = \left| \frac{\vec{b} x(\vec{a}_2 - \vec{a}_1)}{|\vec{b}|} \right|$
 - SCALAR TRIPLE PRODUCT/BOX PRODUCT/MIXED PRODUCT

The scalar triple product of three vectors $\vec{a}, \vec{b} \& \vec{c}$ is defined as: $\vec{a} \times \vec{b} \cdot \vec{c} = |\vec{a}| |\vec{b}| |\vec{c}| \sin \theta \cos \phi$ where θ is the angle between $\vec{a} & \vec{b} & \phi$ is the angle between $\vec{a} \times \vec{b} & \vec{c}$.

It is also defined as $[\vec{a}\vec{b}\vec{c}]$, spelled as box product.

Scalar triple product geometrically represents the volume of the parallelopiped whose three couterminous edges are represented by $\vec{a}, \vec{b} \& \vec{c} i.e. V = [\vec{a} \vec{b} \vec{c}]$ 0 98930 58881. page 45 of 77

In a scalar triple product the position of dot & cross can be interchanged i.e.

$$\vec{a}.(\vec{b}\vec{x}\vec{c}) = (\vec{a}\vec{x}\vec{b}).\vec{c} OR[\vec{a}\vec{b}\vec{c}] = [\vec{b}\vec{c}\vec{a}] = [\vec{c}\vec{a}\vec{b}]$$

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = -\vec{a} \cdot (\vec{c} \times \vec{b}) \text{ i.e. } [\vec{a} \ \vec{b} \ \vec{c}] = -[\vec{a} \ \vec{c} \ \vec{b}]$$

If
$$\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$$
; $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ & $\vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}$ then $[\vec{a} \ \vec{b} \ \vec{c}] = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$.

In general, if $\vec{a} = a_1 \vec{l} + a_2 \vec{m} + a_3 \vec{n}$; $\vec{b} = b_1 \vec{l} + b_2 \vec{m} + b_3 \vec{n}$ & $\vec{c} = c_1 \vec{l} + c_2 \vec{m} + c_3 \vec{n}$

then
$$\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} \begin{bmatrix} \vec{l} \ \vec{m} \ \vec{n} \end{bmatrix}$$
; where $\vec{\ell}$, \vec{m} & \vec{n} are non coplanar vectors.

$$[ijk] = 1 \qquad \qquad [K\vec{a}\ \vec{b}\ \vec{c}] = K[\vec{a}\ \vec{b}\ \vec{c}] \qquad \qquad [(\vec{a} + \vec{b})\ \vec{c}\ \vec{d}] = [\vec{a}\ \vec{c}\ \vec{d}] + [\vec{b}\ \vec{c}\ \vec{d}]$$

opposite faces and is also called the centre of the tetrahedron. In case the tetrahedron is regular it is equidistant from the vertices and the four faces of the tetrahedron. 껕

<u>(S)</u>

eko Classes,

Remember that : $[\vec{a} - \vec{b} \quad \vec{b} - \vec{c} \quad \vec{c} - \vec{a}] = 0$ $\begin{bmatrix} \vec{a} + \vec{b} & \vec{b} + \vec{c} & \vec{c} + \vec{a} \end{bmatrix} = 2 \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$.

VECTOR TRIPLE PRODUCT: Let $\vec{a}, \vec{b}, \vec{c}$ be any three vectors, then the expression $\vec{a} \times (\vec{b} \times \vec{c})$ is a vector & is called a vector triple product.

GEOMETRICAL INTERPRETATION OF $\vec{a} \times (\vec{b} \times \vec{c})$ ⁴12.

GEOMETRICAL INTERPRETATION OF $\vec{a} \times (\vec{b} \times \vec{c})$

Consider the expression $\vec{a} \times (\vec{b} \times \vec{c})$ which itself is a vector, since it is a cross product of two vectors $\vec{a} \& (\vec{b} \times \vec{c})$. Now $\vec{a} \times (\vec{b} \times \vec{c})$ is a vector perpendicular to the plane containing $\vec{a} \& (\vec{b} \times \vec{c})$ but $\vec{b} \times \vec{c}$ is a vector perpendicular to the plane $\vec{b} \& \vec{c}$, therefore $\vec{a} \times (\vec{b} \times \vec{c})$ is a vector lies in the plane of $\vec{b} \& \vec{c}$ and perpendicular to \vec{a} . Hence we can express $\vec{a} \times (\vec{b} \times \vec{c})$ in terms of $\vec{b} \& \vec{c}$

i.e. $\vec{a} \times (\vec{b} \times \vec{c}) = x\vec{b} + y\vec{c}$ where x & v are scalars.

$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c} \qquad (\vec{a} \times \vec{b}) \times \vec{c} = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{b} \cdot \vec{c})\vec{a}$$

 $(\vec{a} \times \vec{b}) \times \vec{c} \neq \vec{a} \times (\vec{b} \times \vec{c})$

13. LINEAR COMBINATIONS / Linearly Independence and Dependence of Vectors:

Given a finite set of vectors $\vec{a}, \vec{b}, \vec{c}, \dots$ then the vector $\vec{r} = x\vec{a} + y\vec{b} + z\vec{c} + \dots$ is called a linear

combination of $\vec{a}, \vec{b}, \vec{c}, \dots$ for any x, y, z \in R. We have the following results:

- Fundamental Theorem In Plane: Let \vec{a}, \vec{b} be non zero, non collinear vectors. Then any vector \vec{r} (a) coplanar with \vec{a}, \vec{b} can be expressed uniquely as a linear combination of \vec{a}, \vec{b} i.e. There exist some unique $x,y \in R$ such that $x\vec{a} + y\vec{b} = \vec{r}$.
- FUNDAMENTAL THEOREM IN SPACE: Let $\vec{a}, \vec{b}, \vec{c}$ be non-zero, non-coplanar vectors in space. Then any vector \vec{r} , can be uniquily expressed as a linear combination of $\vec{a}, \vec{b}, \vec{c}$ i.e. There exist some unique
- If $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n$ are n non zero vectors, & k_1, k_2, \dots, k_n are n scalars & if the linear combination $\vec{k}_1 \vec{x}_1 + k_2 \vec{x}_2 + \dots, k_n \vec{x}_n = 0 \Rightarrow k_1 = 0, k_2 = 0$.
- are Linearly Independent vectors. If $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n$ are not Linearly Independent then they are said to be Linearly vectors . i.e. if $k_1\vec{x}_1+k_2\vec{x}_2+\dots+k_n\vec{x}_n=0$ & if there exists at least one $k_r\neq 0$ then consider to be Linearly Dependent.
- If $\vec{a} = 3i + 2j + 5k$ then \vec{a} is expressed as a Linear Combination of vectors \hat{i} , \hat{j} , \hat{k} . Also, \vec{a} Note: $\hat{i},\,\hat{j},\,\hat{k}$ form a linearly dependent set of vectors. In general , every set of four vectors is a linearly dependent system.
- \hat{i} , \hat{j} , \hat{k} are Linearly Independent set of vectors. For $K_1\hat{i} + K_2\hat{j} + K_3\hat{k} = 0 \implies K_1 = 0 = K_2 = K_3$
- Two vectors $\vec{a} \& \vec{b}$ are linearly dependent $\Rightarrow \vec{a}$ is parallel to \vec{b} i.e. $\vec{a} \times \vec{b} = 0 \Rightarrow$ linear dependence of Phone : 0 903 $\vec{a} \& \vec{b}$. Conversely if $\vec{a} \times \vec{b} \neq 0$ then $\vec{a} \& \vec{b}$ are linearly independent.
 - If three vectors $\vec{a}, \vec{b}, \vec{c}$ are linearly dependent, then they are coplanar i.e. $[\vec{a}, \vec{b}, \vec{c}] = 0$, conversely, $[\vec{a}, \vec{b}, \vec{c}] \neq 0$, then the vectors are linearly independent.
- **COPLANARITY OF VECTORS:**

Four points A, B, C, D with position vectors \vec{a} , \vec{b} , \vec{c} , \vec{d} respectively are coplanar if and only if there exist \vec{b} scalars x, y, z, w not all zero simultaneously such that $x\vec{a} + y\vec{b} + z\vec{c} + w\vec{d} = 0$ where, x + y + z + w = 0.

RECIPROCAL SYSTEM OF VECTORS: If $\vec{a}, \vec{b}, \vec{c} \& \vec{a}', \vec{b}', \vec{c}'$ are two sets of non coplanar vectors such that $\vec{a}, \vec{a}' = \vec{b}, \vec{b}' = \vec{c}, \vec{c}' = 1$ then the two systems are called Reciprocal System of vectors.

- two systems are called Reciprocal System of vectors.

 Note: $a' = \frac{\vec{b} \times \vec{c}}{\left[\vec{a} \ \vec{b} \ \vec{c}\right]}; b' = \frac{\vec{c} \times \vec{a}}{\left[\vec{a} \ \vec{b} \ \vec{c}\right]}; c' = \frac{\vec{a} \times \vec{b}}{\left[\vec{a} \ \vec{b} \ \vec{c}\right]}$ EQUATION OF APLANE:

 The equation $(\vec{r} \vec{r}_0) . \vec{n} = 0$ represents a plane containing the point with p.v. \vec{r}_0 where \vec{n} is a $\sum_{i=0}^{\infty} \vec{c}_i$ vector normal to the plane $\vec{r} \cdot \vec{n} = d$ is the general equation of a plane.

- normal to the plane OPN such that $\vec{r}, \vec{F} \& \vec{M}$ form a right handed system.

l, m,

plane

$$\frac{d_1 - d_2}{\sqrt{a^2 + b^2 + c^2}}$$

Planes bisecting the angle between two planes

$$a_1x + b_1y + c_1z + d_1 = 0$$
 and $a_2 + b_2y + c_2z + d_2 = 0$ is given by

$$\begin{vmatrix} a_1x + b_1y + c_1z + d_1 = 0 & \text{and} & a_2 + b_2y + c_2z + d_2 = 0 & \text{is given by} \\ \frac{\left| a_1x + b_1y + c_1z + d_1 \right|}{\sqrt{a_1^2 + b_1^2 + c_1^2}} \right| = \pm \begin{vmatrix} \frac{a_2x + b_2y + c_2z + d_2}{\sqrt{a_2^2 + b_2^2 + c_2^2}} \end{vmatrix}$$
Of these two bisecting planes, one bisects the acute and the other obtuse angle between the given $\frac{a_1x + b_1y + c_1z + d_1}{\sqrt{a_1^2 + b_1^2 + c_1^2}} = \frac{a_2x + b_2y + c_2z + d_2}{\sqrt{a_1^2 + b_2^2 + c_2^2}} = \frac{a_2x + b_2y + c_2z + d_2}{\sqrt{a_1^2 + b_2^2 + c_2^2}} = \frac{a_2x + b_2y + c_2z + d_2}{\sqrt{a_1^2 + b_2^2 + c_2^2}} = \frac{a_2x + b_2y + c_2z + d_2}{\sqrt{a_1^2 + b_2^2 + c_2^2}} = \frac{a_2x + b_2y + c_2z + d_2}{\sqrt{a_1^2 + b_2^2 + c_2^2}} = \frac{a_2x + b_2y + c_2z + d_2}{\sqrt{a_1^2 + b_2^2 + c_2^2}} = \frac{a_2x + b_2y + c_2z + d_2}{\sqrt{a_1^2 + b_2^2 + c_2^2}} = \frac{a_2x + b_2y + c_2z + d_2}{\sqrt{a_1^2 + b_2^2 + c_2^2}} = \frac{a_2x + b_2y + c_2z + d_2}{\sqrt{a_1^2 + b_2^2 + c_2^2}} = \frac{a_2x + b_2y + c_2z + d_2}{\sqrt{a_1^2 + b_2^2 + c_2^2}} = \frac{a_2x + b_2y + c_2z + d_2}{\sqrt{a_1^2 + b_2^2 + c_2^2}} = \frac{a_1x + b_1y + c_1z + d_1}{\sqrt{a_1^2 + b_2^2 + c_2^2}} = \frac{a_1x + b_2y + c_2z + d_2}{\sqrt{a_1^2 + b_2^2 + c_2^2}} = \frac{a_1x + b_2y + c_2z + d_2}{\sqrt{a_1^2 + b_2^2 + c_2^2}} = \frac{a_1x + b_2y + c_2z + d_2}{\sqrt{a_1^2 + b_2^2 + c_2^2}} = \frac{a_1x + b_2y + c_2z + d_2}{\sqrt{a_1^2 + b_2^2 + c_2^2}} = \frac{a_1x + b_2y + c_2z + d_2}{\sqrt{a_1^2 + b_2^2 + c_2^2}} = \frac{a_1x + b_2y + c_2z + d_2}{\sqrt{a_1^2 + b_2^2 + c_2^2}} = \frac{a_1x + b_2y + c_2z + d_2}{\sqrt{a_1^2 + b_2^2 + c_2^2}} = \frac{a_1x + b_2y + c_2z + d_2}{\sqrt{a_1^2 + b_2^2 + c_2^2}} = \frac{a_1x + b_2y + c_2z + d_2}{\sqrt{a_1^2 + b_2^2 + c_2^2}} = \frac{a_1x + b_2y + c_2z + d_2}{\sqrt{a_1^2 + b_2^2 + c_2^2}} = \frac{a_1x + b_2y + c_2z + d_2}{\sqrt{a_1^2 + b_2^2 + c_2^2}} = \frac{a_1x + b_2y + c_2z + d_2}{\sqrt{a_1^2 + b_2^2 + c_2^2}} = \frac{a_1x + b_2y + c_2z + d_2}{\sqrt{a_1^2 + b_2^2 + c_2^2}} = \frac{a_1x + b_2y + c_2z + d_2}{\sqrt{a_1^2 + b_2^2 + c_2^2}} = \frac{a_1x + b_2y + c_2z + d_2}{\sqrt{a_1^2 + b_2^2 + c_2^2}} = \frac{a_1x + b_2y + c_2z + d_2}{\sqrt{a_1^2 + b_2^2 + c_2^2}} = \frac{a_1x + b_2y + c_2z + d_2}{\sqrt{a_1^2 + b_2^2 + c_2^2}} = \frac{a_1x + b_2y + c_2z + d_2}{\sqrt{a_1^2 + b_2^2 + c_2^$

Equation of a plane through the intersection of two planes P_1 and P_2 is given by $P_1 + \lambda P_2 = 0$

STRAIGHT LINE IN SPACE

Equation of a line through $A(x_1, y_1, z_1)$ and having direction cosines l, m, n are

$$\frac{1}{1} = \frac{1}{m} = \frac{1}{n}$$
and the lines through (x_1, y_1, z_1) and (x_2, y_2, z_2)

$$\frac{x - x_1}{1} = \frac{y - y_1}{1} = \frac{z - z_1}{1}$$

- $x_2 x_1$ $y_2 y_1$ $z_2 z_1$ Intersection of two planes $a_1x + b_1y + c_1z + d_1 = 0$ and $a_2x + b_2y + c_2z + d_2 = 0$ (ii)together represent the unsymmetrical form of the straight line.
- $\frac{\mathbf{x} \mathbf{x}_1}{\mathbf{z}} = \frac{\mathbf{y} \mathbf{y}_1}{\mathbf{z}} = \frac{\mathbf{z} \mathbf{z}_1}{\mathbf{z} \mathbf{z}_1}$ General equation of the plane containing the line (iii)

 $A(x-x_1) + B(y-y_1) + c(z-z_1) = 0$ where Al + bm + cn = 0

LINE OF GREATEST SLOPE

AB is the line of intersection of G-plane and H is the horizontal plane. Line of greatest slope on a given plane, drawn through a given point on the plane, is the line through the point 'P' perpendicular to the line of intersetion of the given plane with any horizontal plane.

0 98930 58881.

R. K. Sir), Bhopal Phone : 0 903 903 7779,

EXERCISE-

- non collinear vectors such that, $\vec{p} = (x+4y)\vec{a} + (2x+y+1)\vec{b}$ Q.1 $\vec{q} = (y - 2x + 2)\vec{a} + (2x - 3y - 1)\vec{b}$, find x & y such that $3\vec{p} = 2\vec{q}$.
- Show that the points $\vec{a} 2\vec{b} + 3\vec{c}$; $2\vec{a} + 3\vec{b} 4\vec{c} & -7\vec{b} + 10\vec{c}$ are collinear. Q.2 (a)
 - Prove that the points A = (1,2,3), B(3,4,7), C(-3,-2,-5) are collinear & find the ratio in which B divides AC.
- Kariya (S. Points X & Y are taken on the sides QR & RS, respectively of a parallelogram PQRS, so that $\overrightarrow{QX} = 4 \overrightarrow{XR}$ 껕 & $\overrightarrow{RY} = 4\overrightarrow{YS}$. The line XY cuts the line PR at Z. Prove that $\overrightarrow{PZ} = \left(\frac{21}{25}\right) \overrightarrow{PR}$.
- Find out whether the following pairs of lines are parallel, non-parallel & intersecting, or non-parallel & non-intersecting.

(i)
$$\vec{r}_{1} = \hat{i} + \hat{j} + 2\hat{k} + \lambda \left(3\hat{i} - 2\hat{j} + 4\hat{k} \right)$$

$$\vec{r}_{2} = 2\hat{i} + \hat{j} + 3\hat{k} + \mu \left(-6\hat{i} + 4\hat{j} - 8\hat{k} \right)$$

$$\vec{r}_{1} = \hat{i} + \hat{k} + \lambda \left(\hat{i} + 3\hat{j} + 4\hat{k} \right)$$
(ii)
$$\vec{r}_{2} = 2\hat{i} + 4\hat{j} + 6\hat{k} + \mu \left(2\hat{i} + \hat{j} + 3\hat{k} \right)$$

- $\vec{r}_2 = 2\hat{i} + 3\hat{j} + \mu \left(4\hat{i} \hat{j} + \hat{k}\right)$
- Let OACB be paralelogram with O at the origin & OC a diagonal. Let D be the mid point of OA. Q.5 Using vector method prove that BD & CO intersect in the same ratio. Determine this ratio.
- A line EF drawn parallel to the base BC of a ΔABC meets AB & AC in F & E respectively. BE & CF meet in L. Use vectors to show that AL bisects BC.
- Q.7 'O' is the origin of vectors and A is a fixed point on the circle of radius a' with centre O. The vector OA

```
(2abc) \Delta
                          where \Delta is the area of the triangle.
(a+b)(b+c)(c+a)
```

Q.23 If $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are position vectors of the vertices of a cyclic quadrilateral ABCD prove that :

$$\frac{\left| \vec{a} \times \vec{b} + \vec{b} \times \vec{d} + \vec{d} \times \vec{a} \right|}{(\vec{b} - \vec{a}) \cdot (\vec{d} - \vec{a})} + \frac{\left| \vec{b} \times \vec{c} + \vec{c} \times \vec{d} + \vec{d} \times \vec{b} \right|}{(\vec{b} - \vec{c}) \cdot (\vec{d} - \vec{c})} = 0$$

- -ABC is 'a'. Point E and F are taken on the edges ₹ Q.24 AD and BD respectively such that E divides \overrightarrow{DA} and F divides \overrightarrow{BD} in the ratio 2:1 each. Then find the area of triangle CEF.
- Let $\vec{a} = \sqrt{3} \hat{i} \hat{j}$ and $\vec{b} = \frac{1}{2} \hat{i} + \frac{\sqrt{3}}{2} \hat{j}$ and $\vec{x} = \vec{a} + (q^2 3)\vec{b}$, $\vec{y} = -p\vec{a} + q\vec{b}$. If $\vec{x} \perp \vec{y}$, then express \vec{p} as a function of q, say p = f(q), $(p \ne 0 \& q \ne 0)$ and find the intervals of monotonicity of f(q).

- $A(\vec{a})$; $B(\vec{b})$; $C(\vec{c})$ are the vertices of the triangle ABC such that $\vec{a} = \frac{1}{2}(2\hat{i} \vec{r} 7\hat{k})$; $\vec{b} = 3\vec{r} + \hat{j} 4\hat{k}$ Q.1 $\vec{c} = 22\hat{i} - 11\hat{j} - 9\vec{r}$. A vector $\vec{p} = 2\hat{j} - \hat{k}$ is such that $(\vec{r} + \vec{p})$ is parallel to \hat{i} and $(\vec{r} - 2\hat{i})$ is parallel to \vec{p} . Show that there exists a point $D(\vec{d})$ on the line AB with $\vec{d} = 2t\hat{i} + (1-2t)\hat{j} + (t-4)\hat{k}$. Also find the shortest distance C from AB.
- Q.2 The position vectors of the points A, B, C are respectively (1, 1, 1); (1, -1, 2); (0, 2, -1). Find a unit vector parallel to the plane determined by ABC & perpendicular to the vector (1, 0, 1).
- $(a_1-a)^2$ $(a_1-b)^2$ $(a_1-c)^2$ $(b_1 - b)^2$ $(b_1 - c)^2 = 0$ and if the vectors $\vec{\alpha} = \hat{i} + a\hat{j} + a^2\hat{k}$; $\vec{\beta} = \hat{i} + b\hat{j} + b^2\hat{k}$ Q.3

 $+c\hat{j}+c^2\hat{k}$ are non coplanar, show that the vectors $\vec{\alpha}_1 = \hat{i} + a_1\hat{j} + a_1^2\hat{k}; \vec{\beta}_1 = \hat{i} + b_1\hat{j} + b_1^2\hat{k}$ and

$$\begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix} = 0 \text{ and } \begin{cases} x_1 x_2 + y_1 y_2 + z_1 z_2 = 0 \\ x_2 x_3 + y_2 y_3 + z_2 z_3 = 0 \\ x_3 x_1 + y_3 y_1 + z_3 z_1 = 0 \end{cases}$$

- Q.5
- $$\begin{split} & \vec{\gamma} = \hat{i} + c\hat{j} + c^2\hat{k} \text{ are non coplanar, show that the vectors } & \vec{\alpha}_1 = \hat{i} + a_1\hat{j} + a_1^2\hat{k}; \vec{\beta}_1 = \hat{i} + b_1\hat{j} + b_1^2\hat{k} \text{ and } \underbrace{P}_{1} = \hat{j} + c_1\hat{j} + c_1\hat{j} + c_1\hat{k} + c_1\hat{k} + c_1\hat{j} + c_1\hat{k} + c_1\hat{j} + c_1\hat{k} + c_1\hat{j} + c_1\hat{k} + c_1\hat{j} + c_1\hat{k} + c_1$$
- Q.7
- Q.8

scalar triple product
$$[\vec{n}\vec{a} + \vec{b} \quad \vec{n}\vec{b} + \vec{c} \quad \vec{n}\vec{c} + \vec{a}]$$
 is $(\vec{n}^3 + 1)$
$$\begin{vmatrix} \vec{a} \cdot \hat{i} & \vec{a} \cdot \hat{j} & \vec{a} \cdot \hat{k} \\ \vec{b} \cdot \hat{i} & \vec{b} \cdot \hat{j} & \vec{b} \cdot \hat{k} \\ \vec{c} \cdot \hat{i} & \vec{c} \cdot \hat{j} & \vec{c} \cdot \hat{k} \end{vmatrix}$$

- $\alpha \& \beta \text{ if } \vec{a} \times (\vec{b} \times \vec{c}) + (\vec{a} \cdot \vec{b}) \vec{b} = (4 2\beta \sin \alpha) \vec{b} + (\beta^2 1) \vec{c} \& (\vec{c} \cdot \vec{c}) \vec{a} = \vec{c} \text{ while } \vec{b} \& \vec{c}$ Q.10 are non zero non collinear vectors.
- Q.11 If the vectors $\vec{b}, \vec{c}, \vec{d}$ are not coplanar, then prove that the vector

 $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) + (\vec{a} \times \vec{c}) \times (\vec{d} \times \vec{b}) + (\vec{a} \times \vec{d}) \times (\vec{b} \times \vec{c})$ is parallel to \vec{a} .

 \hat{a} , \hat{b} , \hat{c} are non–coplanar unit vectors . The angle between \hat{b} & \hat{c} is α , between \hat{c} & \hat{a} is β and between \sum page 51 of $\hat{a} \& \hat{b} \text{ is } \gamma$. If A $(\hat{a} \cos \alpha)$, B $(\hat{b} \cos \beta)$, C $(\hat{c} \cos \gamma)$, then show that in \triangle ABC,

$$\begin{split} \frac{\left|\hat{a} \ x \left(\hat{b} \ x \ \hat{c}\right)\right|}{\sin A} &= \frac{\left|\hat{b} \ x \left(\hat{c} \ x \ \hat{a}\right)\right|}{\sin B} = \frac{\left|\hat{c} \ x \left(\hat{a} \ x \ \hat{b}\right)\right|}{\sin C} = \frac{\prod \left|\hat{a} \ x \left(\hat{b} \ x \ \hat{c}\right)\right|}{\left|\sum \sin \alpha \ \cos \beta \ \cos \gamma \ \hat{n}_{1}\right|} \quad \text{where} \\ \hat{n}_{1} &= \frac{\hat{b} \ x \ \hat{c}}{\left|\hat{b} \ x \ \hat{c}\right|} \;, \quad \hat{n}_{2} &= \frac{\hat{c} \ x \ \hat{a}}{\left|\hat{c} \ x \ \hat{a}\right|} \; \& \quad \hat{n}_{3} = \frac{\hat{a} \ x \ \hat{b}}{\left|\hat{a} \ x \ \hat{b}\right|} \;. \end{split}$$

- Given that $\vec{a}, \vec{b}, \vec{p}, \vec{q}$ are four vectors such that $\vec{a} + \vec{b} = \mu \vec{p}, \vec{b}, \vec{q} = 0 \& (\vec{b})^2 = 1$, where μ is a scalar then prove that $|(\vec{a}.\vec{q})\vec{p} (\vec{p}.\vec{q})\vec{a}| = |\vec{p}.\vec{q}|$. Show that $\vec{a} = \vec{b} \times (\vec{a} + \vec{c}) = \vec{c}$ Q.13 prove that $|(\vec{a}.\vec{q})\vec{p}-(\vec{p}.\vec{q})\vec{a}|=|\vec{p}.\vec{q}|$. Show that $\vec{a}=\vec{p}x(\vec{q}x\vec{r})$; $\vec{b}=\vec{q}x(\vec{r}x\vec{p})$ & $\vec{c}=\vec{r}x(\vec{p}x\vec{q})$ represents the sides of a triangle. Further \vec{b}
- prove that a unit vector perpendicular to the plane of this triangle is

 $\frac{\hat{\mathbf{n}}_1 \tan(\vec{\mathbf{p}} \wedge \vec{\mathbf{q}}) + \hat{\mathbf{n}}_2 \tan(\vec{\mathbf{q}} \wedge \vec{\mathbf{r}}) + \hat{\mathbf{n}}_3 \tan(\vec{\mathbf{r}} \wedge \vec{\mathbf{p}})}{\left|\hat{\mathbf{n}}_1 \tan(\vec{\mathbf{p}} \wedge \vec{\mathbf{q}}) + \hat{\mathbf{n}}_2 \tan(\vec{\mathbf{q}} \wedge \vec{\mathbf{r}}) + \hat{\mathbf{n}}_3 \tan(\vec{\mathbf{r}} \wedge \vec{\mathbf{p}})\right|}$ where $\vec{a}, \vec{b}, \vec{c}, \vec{p}, \vec{q}$ are non zero vectors and . 806

no two of \vec{p} , \vec{q} , \vec{r} are mutually perpendicular & $\hat{n}_1 = \frac{p \times q}{|\vec{p} \times \vec{q}|}$; $\hat{n}_2 = \frac{q \times r}{|\vec{q} \times \vec{r}|}$ & $\hat{n}_3 = \frac{\vec{r} \times \vec{p}}{|\vec{r} \times \vec{p}|}$

Given four points P_1 , P_2 , P_3 and P_4 on the coordinate plane with origin O which satisfy the condition

- $\overrightarrow{OP}_{n-1} + \overrightarrow{OP}_{n+1} = \frac{3}{2} \overrightarrow{OP}_n$, n = 2, 3If P_1 , P_2 lie on the curve xy = 1, then prove that P_3 does not lie on the curve. If P_1 , P_2 , P_3 lie on the circle $x^2 + y^2 = 1$, then prove that P_4 lies on this circle.
- Bhopal Phone: 0 903 Let $\vec{a} = \alpha \hat{i} + 2\hat{j} - 3\hat{k}$, $\vec{b} = \hat{i} + 2\alpha \hat{j} - 2\hat{k}$ and $\vec{c} = 2\hat{i} - \alpha \hat{j} + \hat{k}$. Find the value(s) of α , if any, such that $\{(\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c})\} \times (\vec{c} \times \vec{a}) = 0$. Find the vector product when $\alpha = 0$.
- Prove the result (Lagrange's identity) $(\vec{p} \times \vec{q}) \cdot (\vec{r} \times \vec{s}) = \begin{vmatrix} \vec{p} \cdot \vec{r} & \vec{p} \cdot \vec{s} \\ \vec{q} \cdot \vec{r} & \vec{q} \cdot \vec{s} \end{vmatrix}$ & use it to prove the following. Let (ab)denote the plane formed by the lines a,b. If (ab) is perpendicular to (cd) and (ac) is perpendicular to \checkmark (bd) prove that (ad) is perpendicular to (bc). ď
- If $p\vec{x} + (\vec{x} \times \vec{a}) = \vec{b}$; $(p \neq 0)$ prove that $\vec{x} = \frac{p^2 \vec{b} + (\vec{b} \cdot \vec{a})\vec{a} p(\vec{b} \times \vec{a})}{p(p^2 + \vec{a}^2)}$ Q.18
 - Solve the following equation for the vector \vec{p} ; $\vec{p} \times \vec{a} + (\vec{p} \cdot \vec{b})\vec{c} = \vec{b} \times \vec{c}$ where $\vec{a}, \vec{b}, \vec{c}$ are non zero non coplanar vectors and \vec{a} is neither perpendicular to \vec{b} nor to \vec{c} , hence show that (b) $\left(\vec{p} \times \vec{a} + \frac{|\vec{a} \vec{b} \vec{c}|}{\vec{a} \cdot \vec{c}} \vec{c}\right)$ is perpendicular to $\vec{b} - \vec{c}$. : Suhag

<u>(v</u>

- Find a vector \vec{v} which is coplanar with the vectors $\hat{i} + \hat{j} 2\hat{k} & \hat{i} 2\hat{j} + \hat{k}$ and is orthogonal to the vector $-2\hat{i} + \hat{j} + \hat{k}$. It is given that the projection of \vec{v} along the vector $\hat{i} - \hat{j} + \hat{k}$ is equal to $6\sqrt{3}$.
- Consider the non zero vectors \vec{a} , \vec{b} , $\vec{c} \& \vec{d}$ such that no three of which are coplanar then prove that **Teko Classes** $\vec{a} [\vec{b} \vec{c} \vec{d}] + \vec{c} [\vec{a} \vec{b} \vec{d}] = \vec{b} [\vec{a} \vec{c} \vec{d}] + \vec{d} [\vec{a} \vec{b} \vec{c}]$. Hence prove that $\vec{a}, \vec{b}, \vec{c} \& \vec{d}$ represent the position vectors of

the vertices of a plane quadrilateral if $\frac{\left[\vec{b}\vec{c}\vec{d}\right] + \left[\vec{a}\vec{b}\vec{d}\right]}{\left[\vec{a}\vec{c}\vec{d}\right] + \left[\vec{a}\vec{b}\vec{c}\right]} = 1.$

The base vectors $\vec{a}_1, \vec{a}_2, \vec{a}_3$ are given in terms of base vectors $\vec{b}_1, \vec{b}_2, \vec{b}_3$ as, $\vec{a}_1 = 2\vec{b}_1 + 3\vec{b}_2 - \vec{b}_3$ $\vec{a}_2 = \vec{b}_1 - 2\vec{b}_2 + 2\vec{b}_3$ & $\vec{a}_3 = -2\vec{b}_1 + \vec{b}_2 - 2\vec{b}_3$. If $\vec{F} = 3\vec{b}_1 - \vec{b}_2 + 2\vec{b}_3$, then express \vec{F} in terms of

Give the equation of the plane through P, Q and R in the form ax + by + cz = 1.

Give parametric equations for the line through R that is perpendicular to the plane in part (b). Find the point where the line of intersection of the planes x - 2y + z = 1 and x + 2y - 2z = 5, intersects

Where does the plane in part (b) intersect the y-axis.

(b) (c)

the plane 2x + 2y + z + 6 = 0.

Q.14

page **52** of 77

08830

903

Sir), Bhopal

.

껕

eko Classes, Maths: Suhag

at an o

	Q.15	Feet of the perpendicular drawn from the point $P(2, 3, -5)$ on the axes of coordinates are A, B and C. Find the equation of the plane passing through their feet and the area of $\triangle ABC$.						
.com	Q .16	$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and $\frac{x-4}{4} = \frac{y}{5} = \frac{z+3}{3}$ at right angles.						
D		$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
Т	Q.17	Find the equation of the plane containing the straight line $\frac{x-1}{2} = \frac{y+2}{-3} = \frac{z}{5}$ and perpendicular to the						
જ		plane $x - y + z + 2 = 0$.						
ő	Q.18	Find the value of p so that the lines $\frac{x+1}{-3} = \frac{y-p}{2} = \frac{z+2}{1}$ and $\frac{x}{1} = \frac{y-7}{-3} = \frac{z+7}{2}$ are in the same $\frac{\omega}{2}$						
www.MathsBySuha		plane. For this value of p, find the coordinates of their point of intersection and the equation of the plane \circ						
	Q.19	containing them. Find the equations to the line of greatest slope through the point $(7, 2, -1)$ in the plane $x - 2y + 3z = 0$ assuming that the axes are so placed that the plane $2x + 3y - 4z = 0$ is horizontal.						
	Q.20	Let ABCD be a tetrahedron such that the edges AB, AC and AD are mutually perpendicular. Let the area of triangles ABC, ACD and ADB be denoted by x, y and z sq. units respectively. Find the area of the triangle BCD						
es.com &	Q.21	the triangle BCD. The position vectors of the four angular points of a tetrahedron OABC are $(0,0,0)$; $(0,0,2)$; $(0,4,0)$ and $(6,0,0)$ respectively. A point P inside the tetrahedron is at the same distance 'r' from the four plane of faces of the tetrahedron. Find the value of 'r'.						
	Q.22	The line $\frac{x+6}{5} = \frac{y+10}{3} = \frac{z+14}{8}$ is the hypotenuse of an isosceles right angled triangle whose opposite						
www.TekoClasses	Q.23	vertex is $(7, 2, 4)$. Find the equation of the remaining sides. Find the foot and hence the length of the perpendicular from the point $(5, 7, 3)$ to the line						
0		$\frac{x-15}{3} = \frac{y-29}{8} = \frac{5-z}{5}$. Also find the equation of the plane in which the perpendicular and the given						
<u>\</u>		ctroight line lie						
Ž.	Q.24	Find the equation of the line which is reflection of the line $\frac{x-1}{9} = \frac{y-2}{-1} = \frac{z+3}{-3}$ in the plane $3x - 3y + 10z = 26$. Find the equation of the plane containing the line $\frac{x-1}{2} = \frac{y}{3} = \frac{z}{2}$ and parallel to the line $\frac{x-3}{2} = \frac{y}{5} = \frac{z-2}{4}$. Find also the S.D. between the two lines.						
⋚		3x - 3y + 10z = 26.						
	Q.25	Find the equation of the plane containing the line $\frac{x-1}{2} = \frac{y}{3} = \frac{z}{2}$ and parallel to the line $\frac{x-3}{2} = \frac{y}{5} = \frac{z-2}{4}$.						
<u>e</u>		Find also the S.D. between the two lines. EXERCISE—4						
ebsite		EXERCISE—4						
		Let $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = 10\overrightarrow{a} + 2\overrightarrow{b}$ and $\overrightarrow{OC} = \overrightarrow{b}$ where O, A&C are non-collinear points. Let p denote the						
FREE Download Study Package from w	Q.1(u)	area of the quadrilateral OABC, and let q denote the area of the parallelogram with OA and OC as						
e f	(b)	adjacent sides. If $p = kq$, then $k = $ If \vec{A} , \vec{B} & \vec{C} are vectors such that $ \vec{B} = \vec{C} $, Prove that; $\left[(\vec{A} + \vec{B})x(\vec{A} + \vec{C}) \right] x(\vec{B}x\vec{C}).(\vec{B} + \vec{C}) = 0$ [JEE '97, 2 + 5]						
age		$\left[\left(\vec{A} + \vec{B} \right) x \left(\vec{A} + \vec{C} \right) \right] x \left(\vec{B} x \vec{C} \right) \cdot \left(\vec{B} + \vec{C} \right) = 0 $ [JEE '97, 2 + 5]						
줐	Q.2(a)	Vectors \vec{x} , \vec{y} & \vec{z} each of magnitude $\sqrt{2}$, make angles of 60° with each other. If $\vec{x} \times (\vec{y} \times \vec{z}) = \vec{a}$, $\vec{y} \times (\vec{z} \times \vec{x}) = \vec{b}$ and $\vec{x} \times \vec{y} = \vec{c}$ then find \vec{x} , \vec{y} and \vec{z} in terms of \vec{a} , \vec{b} and \vec{c} . The position vectors of the points P & Q are $5\hat{i} + 7\hat{j} - 2\hat{k}$ and $-3\hat{i} + 3\hat{j} + 6\hat{k}$ respectively. The \vec{o}						
<u>С</u>		$\vec{x} \times (\vec{y} \times \vec{z}) = \vec{a}, \ \vec{y} \times (\vec{z} \times \vec{x}) = \vec{b} \text{ and } \vec{x} \times \vec{y} = \vec{c} \text{ then find } \vec{x}, \ \vec{y} \text{ and } \vec{z} \text{ in terms of } \vec{a}, \ \vec{b} \text{ and } \vec{c}.$						
þ	(b)	The position vectors of the points P & Q are $5\hat{i}+7\hat{j}-2\hat{k}$ and $-3\hat{i}+3\hat{j}+6\hat{k}$ respectively. The						
ξŢ		vector $\vec{A} = 3\hat{i} - \hat{j} + \hat{k}$ passes through the point P & the vector $\vec{B} = -3\hat{i} + 2\hat{j} + 4\hat{k}$ passes through the						
0		point Q. A third vector $2\hat{i} + 7\hat{j} - 5\hat{k}$ intersects vectors $\vec{A} \& \vec{B}$. Find the position vectors of the points						
Oa	$\Omega^{2}(\mathbf{a})$	of intersection. [REE '97, 6+6] $\hat{\sigma}$						
M	(i)	Select the correct alternative(s) Select the correct alternative(s) Select the correct alternative(s) If $\vec{a} = \hat{i} + \hat{i} + \hat{k}$, $\vec{b} = 4\hat{i} + 3\hat{i} + 4\hat{k}$ and $\vec{c} = \hat{i} + \alpha\hat{i} + \beta\hat{k}$ are linearly dependent vectors & $ \vec{a} = \sqrt{3}$, then:						
9	(1)	(A) $\alpha = 1$, $\beta = -1$ (B) $\alpha = 1$, $\beta = \pm 1$ (C) $\alpha = -1$, $\beta = \pm 1$ (D) $\alpha = \pm 1$, $\beta = 1$						
	(ii)	For three vectors \vec{u} , \vec{v} , \vec{w} which of the following expressions is not equal to any of the remaining three?						
Æ	(iii)	(A) $\vec{u} \cdot (\vec{v} \times \vec{w})$ (B) $(\vec{v} \times \vec{w}) \cdot \vec{u}$ (C) $\vec{v} \cdot (\vec{u} \times \vec{w})$ (D) $(\vec{u} \times \vec{v}) \cdot \vec{w}$ Which of the following expressions are meaningful?						
芷	(m)	minor of the following expressions are mouningful;						

	(iii)	\vec{a} , \vec{b} & \vec{c} are three unit	t vectors such that \vec{a}	$\times \left(\vec{b} \times \vec{c} \right) = \frac{1}{2} \left(\vec{b} + \vec{c} \right)$	(a) Find angle between vecto	rs		
ag.com	(iv)	act on the particle along th	rner P of a cube of side e diagonals of the face	e 1 meter. Forces of m s passing through the pe	nagnitudes 2, 3 and 5 kg weigh oint P. Find the moment of the 0 3 + 3 + 3 + 3 out of 100]	ht se		
H	Q.9(a)	The diagonals of a parallelo	ogram are given by vec	etors $2\hat{i} + 3\hat{j} - 6\hat{k}$ and	$3\hat{i} - 4\hat{j} - \hat{k}$. Determine its side	es j		
Š	(b)	and also the area. Find the value of λ such the	hat a 'h c'are all non-	zero and		55		
SE	(0)				[REE '2001 (Mains) 3 + 3]	page		
ath.	O.10(a	,			$5\hat{k}$ and $\vec{b} = 2\hat{i} + 3\hat{j} - \hat{k}$ are			
Ĕ	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	$\vec{r} \cdot (2\hat{i} + \hat{j} + \hat{k}) + 8 = 0.$	FF	1 2j i	5K 33-3 0 21 1 5 1 K 33-	81.		
⋚	(h)	,	are at $=\hat{i} + 3\hat{i}$ and 2	$\hat{i} + 5\hat{i}$ and its orthocen	tre is at $\hat{i} + 2\hat{j}$. Find the position	2nc		
≶		vector of third vertex.			[REE '2001 (Mains) 3 + 3]	30		
∞ ~	Q.11 (a) If \vec{a} , \vec{b} and \vec{c} are unit ve	ectors, then $\left \vec{a} - \vec{b} \right ^2$ +	$-\left \vec{\mathbf{b}}-\vec{\mathbf{c}}\right ^2+\left \vec{\mathbf{c}}-\vec{\mathbf{a}}\right ^2$ does	s NOT exceed	686		
		$(A) 4 \qquad (B)$	3)9	(C) 8	(D) 6	0		
S.	(b)	Let $\vec{a} = \hat{i} - \hat{k}$, $\vec{b} = x \hat{i} + \hat{j} + \hat{j} + \hat{k}$ (A) only x	$(1-x)k$ and $\vec{c} = yi + 3$	· x j+(1+x-y)k . The (C) NEITHER x NO	en $[\vec{a}, b, \vec{c}]$ depends on R y (D) both x and y	79,		
Sec		(c =) c = = j = = (=	-	[JEE '2001 (S	Screening) 1 + 1 out of 35]	3 77		
ass	Q.12(a)	Show by vector methods.	, that the angular bisec	ctors of a triangle are co	oncurrent and find an expression	on S		
$\overline{\mathcal{S}}$		for the position vector of t	the point of concurren	cy in terms of the posit	ion vectors of the vertices.	903		
쏬	(0)	Find 3-dimensional vecto $\vec{v}_1 \cdot \vec{v}_1 = 4$, $\vec{v}_1 \cdot \vec{v}_2 =$			$\vec{y} \cdot \vec{y} = 20$	0		
<u>~</u>						one		
$\frac{8}{8}$	(c)				where f_1 , f_2 , g_1 , g_2 are continuous			
≥		⇒			all t and $\vec{A}(0) = 2\hat{i} + 3\hat{j}$	$\stackrel{\smile}{\sim}$		
<u>е</u>	\		$3\hat{i} + 2\hat{j} \text{ and } B(1) = 2\hat{i}$		$\vec{A}(t)$ and $\vec{B}(t)$ are parallel for Mains) $5 + 5 + 5$ out of 100			
OSI	O 12(-)	some t.	and the second state of the			\subseteq		
<u>Me</u>	Q.13(a)	the angle between $\frac{1}{2}$ and	vectors such that a +	2 b and 3 a - 4 b are p	perpendicular to each other the	√.		
\subseteq		the angle between a and	U IS	(1)	(2)	Ω.		
<u></u>		(A) 45° (H	$(3) 60^{\circ}$	(C) $\cos^{-1}\left(\frac{1}{3}\right)$	(D) $\cos^{-1}\left(\frac{z}{7}\right)$	S)		
<u>æ</u>	(b)	Let $\vec{V} = 2\hat{i} + \hat{j} - \hat{k}$ and \vec{W}	$\vec{V} = \hat{i} + 3\hat{k}$. If \vec{U} is a u	nit vector, then the ma	ximum value of the scalar trip	le.È		
á		product $[\vec{U} \ \vec{V} \ \vec{W}]$ is		[JEE 2002(Sc	ereening), $3+3$	Ka		
ac		(A)-1 (H	3) $\sqrt{10} + \sqrt{6}$	(C) $\sqrt{59}$	(D) $\sqrt{60}$	g		
ر	Q.14	Let V be the volume	of the parallelopi	ped formed by the	vectors $\vec{a} = a_1 \hat{i} + a_2 \hat{i} + a_3 \hat{i}$	iha		
g		the angle between \hat{a} and \hat{b} is $(A) \ 45^0 \qquad (B) \ 60^0 \qquad (C) \ \cos^{-1}\left(\frac{1}{3}\right) \qquad (D) \ \cos^{-1}\left(\frac{2}{7}\right)$ (b) Let $\vec{V} = 2\hat{i} + \hat{j} - \hat{k}$ and $\vec{W} = \hat{i} + 3\hat{k}$. If \vec{U} is a unit vector, then the maximum value of the scalar triple product $\begin{bmatrix} \vec{U} \ \vec{V} \ \vec{W} \end{bmatrix}$ is $[JEE \ 2002(Screening), 3 + 3]$ (A) -1 (B) $\sqrt{10} + \sqrt{6}$ (C) $\sqrt{59}$ (D) $\sqrt{60}$ Q.14 Let V be the volume of the parallelopiped formed by the vectors $\vec{a} = a_1\hat{i} + a_2 \ \hat{j} + a_3\hat{k}$, $\vec{b} = b_1\hat{i} + b_2 \ \hat{j} + b_3\hat{k}$, $\vec{c} = c_1\hat{i} + c_2 \ \hat{j} + c_3\hat{k}$. If a_r , b_r , c_r , where $r = 1, 2, 3$, are non-negative real numbers and $\sum_{i=1}^{3} (a_r + b_r + c_r) = 3L$, show that $V < L^3$. [JEE 2002(Mains), 5]						
<u>デ</u>		$\begin{array}{cccccccccccccccccccccccccccccccccccc$) 21 1 1	T, T, T,	FIEE 2002/34 :)] aths		
ag		numbers and $\sum_{r=1}^{\infty} (a_r + b)$	$_{\rm r} + c_{\rm r}$) = 3L, show the	$\text{nat } V < L^3.$	[JEE 2002(Mains), 3			
9	Q.13(a) If \vec{a} and \vec{b} are two unit vectors such that $\vec{a} + 2\vec{b}$ and $5\vec{a} - 4\vec{b}$ are perpendicular to each other the angle between \vec{a} and \vec{b} is $ (A) 45^0 \qquad (B) 60^0 \qquad (C) \cos^{-1}\left(\frac{1}{3}\right) \qquad (D) \cos^{-1}\left(\frac{2}{7}\right) $ (b) Let $\vec{V} = 2\hat{i} + \hat{j} - \hat{k}$ and $\vec{W} = \hat{i} + 3\hat{k}$. If \vec{U} is a unit vector, then the maximum value of the scalar triproduct $[\vec{U} \ \vec{V} \ \vec{W}]$ is $ [JEE\ 2002(Screening), 3 + 3] $ (A) $-1 \qquad (B) \sqrt{10} + \sqrt{6} \qquad (C) \sqrt{59} \qquad (D) \sqrt{60} $ Q.14 Let V be the volume of the parallelopiped formed by the vectors $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ if \vec{a}_r , \vec{b}_r , \vec{c}_r , where $\vec{r} = 1, 2, 3$, are non-negative remarks and $\sum_{r=1}^{3} (a_r + b_r + c_r) = 3L$, show that $V < L^3$. [JEE\ 2002(Mains)] Q.15 If $\vec{a} = \hat{i} + a\hat{j} + \hat{k}$, $\vec{b} = \hat{j} + a\hat{k}$, $\vec{c} = a\hat{i} + \hat{k}$, then find the value of 'a' for which volume parallelopiped formed by three vectors as coterminous edges, is minimum, is $ (A) \frac{1}{\sqrt{3}} \qquad (B) - \frac{1}{\sqrt{3}} \qquad (C) \pm \frac{1}{\sqrt{3}} \qquad (D) \text{ none [JEE\ 2003(Scr.).] } $ Q.16(i) Find the equation of the plane passing through the points $(2, 1, 0)$, $(5, 0, 1)$ and $(4, 1, 1)$. (ii) If P is the point $(2, 1, 6)$ then find the point Q such that PQ is perpendicular to the plane in (i) and the results of the plane in (ii) and the results of the plane in (ii) and the results of the plane in (iii) and the results of the plane in (iiiii) and the results of the plane in (iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii							
\leq		parallelopiped formed by	three vectors as coteri	minous edges, is minim	um, is	Jas		
\preceq		$(A) \frac{1}{\sqrt{3}} \qquad (I$	$(3) - \frac{1}{\sqrt{3}}$	(C) $\pm \frac{1}{\sqrt{2}}$	(D) none [JEE 2003(Scr.), 3	3] 9		
뷔	Q.16(i)	Find the equation of the p	plane passing through	the points $(2, 1, 0)$, $(5$, 0, 1) and (4, 1, 1).	e H		
$\overline{\Upsilon}$	(ii)	If P is the point (2, 1, 6) th	en find the point Q suc	ch that PQ is perpendicu	ılar to the plane in (i) and the m	id		

If \vec{u} , \vec{v} , \vec{w} are three non-coplanar unit vectors and α , β , γ are the angles between \vec{u} and \vec{v} , \vec{v} and \vec{w} , \vec{w} and \vec{u} respectively and \vec{x} , \vec{y} , \vec{z} are unit vectors along the bisectors of the angles

$$\alpha$$
, β , γ respectively. Prove that $[\vec{x} \times \vec{y} \ \vec{y} \times \vec{z} \ \vec{z} \times \vec{x}] = \frac{1}{16} [\vec{u} \ \vec{v} \ \vec{w}]^2 \sec^2 \frac{\alpha}{2} \sec^2 \frac{\beta}{2} \sec^2 \frac{\gamma}{2}$. [JEE 2003, 4 out of 60]

- Q.18(a) If the lines $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4}$ and $\frac{x-3}{1} = \frac{y-k}{2} = \frac{z}{1}$ intersect, then k =

- (b) A unit vector in the plane of the vectors $2\hat{i}+\hat{j}+\hat{k}$, $\hat{i}-\hat{j}+\hat{k}$ and orthogonal to $5\hat{i}+2\hat{j}+6\hat{k}$
 - (A) $\frac{6\hat{i} 5\hat{k}}{\sqrt{61}}$ (B) $\frac{3\hat{j} \hat{k}}{\sqrt{10}}$
- (C) $\frac{2\hat{i}-5\hat{k}}{\sqrt{29}}$ (D) $\frac{2\hat{i}+\hat{j}-2\hat{k}}{3}$

(c) If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{a} \cdot \vec{b} = 1$ and $\vec{a} \times \vec{b} = \hat{j} - \hat{k}$, then $\vec{b} = \hat{k} + \hat{k} = \hat{k} + \hat{k} = \hat{k} =$

[JEE 2004 (screening)]

(C) $2\hat{j} - \hat{k}$

- Q.19(a) Let \vec{a} , \vec{b} , \vec{c} , \vec{d} are four distinct vectors satisfying $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$. Show that $\vec{a} \cdot \vec{b} + \vec{c} \cdot \vec{d} \neq \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{d}$.
 - T is a parallelopiped in which A, B, C and D are vertices of one face. And the face just above it has corresponding vertices A', B', C', D'. T is now compressed to S with face ABCD remaining same and A', B', C', D' shifted to A., B., C., D. in S. The volume of parallelopiped S is reduced to 90% of T. Prove that locus of A. is a plane.

 (c) Let P be the plane passing through (1, 1, 1) and parallel to the lines L₁ and L₂ having direction ratios 1, 0, -1 and -1, 1, 0 respectively. If A, B and C are the points at which P intersects the coordinate axes, ... find the volume of the tetrahedron whose vertices are A. B. Cand the origin
 - find the volume of the tetrahedron whose vertices are A, B, C and the origin.
- Q.20(a) If \vec{a} , \vec{b} , \vec{c} are three non-zero, non-coplanar vectors and $\vec{b}_1 = \vec{b} \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^2} \vec{a}$, $\vec{b}_2 = \vec{b} + \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^2} \vec{a}$
 - $\vec{c}_1 = \vec{c} \frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} + \frac{\vec{b} \cdot \vec{c}}{|\vec{c}|^2} \vec{b}_1, \vec{c}_2 = \vec{c} \frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} \frac{\vec{b}_1 \cdot \vec{c}}{|\vec{b}_1|^2} \vec{b}_1, \vec{c}_3 = \vec{c} \frac{\vec{c} \cdot \vec{a}}{|\vec{c}|^2} \vec{a} + \frac{\vec{b} \cdot \vec{c}}{|\vec{c}|^2} \vec{b}_1, \vec{c}_4 = \vec{c} \frac{\vec{c} \cdot \vec{a}}{|\vec{c}|^2} \vec{a} \frac{\vec{b} \cdot \vec{c}}{|\vec{b}|^2} \vec{a} + \frac{\vec{b} \cdot \vec{c}}{|\vec{c}|^2} \vec{b}_1, \vec{c}_4 = \vec{c} \frac{\vec{c} \cdot \vec{a}}{|\vec{c}|^2} \vec{a} \frac{\vec{b} \cdot \vec{c}}{|\vec{b}|^2} \vec{b}_1, \vec{c}_3 = \vec{c} \frac{\vec{c} \cdot \vec{a}}{|\vec{c}|^2} \vec{a} + \frac{\vec{b} \cdot \vec{c}}{|\vec{c}|^2} \vec{b}_1, \vec{c}_4 = \vec{c} \frac{\vec{c} \cdot \vec{a}}{|\vec{c}|^2} \vec{a} \frac{\vec{b} \cdot \vec{c}}{|\vec{b}|^2} \vec{b}_1, \vec{c}_3 = \vec{c} \frac{\vec{c} \cdot \vec{a}}{|\vec{c}|^2} \vec{b}_1, \vec{c}_4 = \vec{c} \frac{\vec{c} \cdot \vec{a}}{|\vec{c}|^2} \vec{a} \frac{\vec{b} \cdot \vec{c}}{|\vec{b}|^2} \vec{b}_1, \vec{c}_4 = \vec{c} \frac{\vec{c} \cdot \vec{a}}{|\vec{c}|^2} \vec{a} \frac{\vec{b} \cdot \vec{c}}{|\vec{c}|^2} \vec{b}_1, \vec{c}_4 = \vec{c} \frac{\vec{c} \cdot \vec{a}}{|\vec{c}|^2} \vec{a} \frac{\vec{b} \cdot \vec{c}}{|\vec{c}|^2} \vec{b}_1, \vec{c}_4 = \vec{c} \frac{\vec{c} \cdot \vec{a}}{|\vec{c}|^2} \vec{b}_1, \vec{c}_4 = \vec{c} \frac{\vec{c} \cdot \vec{c}}{|\vec{c}|^2} \vec{b}_1, \vec{c}_4 = \vec{c} \frac{\vec{c}$

then the set of orthogonal vectors is

- (A) $(\vec{a}, \vec{b}_1, \vec{c}_3)$

- nal vectors is
 (B) $(\vec{a}, \vec{b}_1, \vec{c}_2)$ (C) $(\vec{a}, \vec{b}_1, \vec{c}_1)$ (D) $(\vec{a}, \vec{b}_2, \vec{c}_2)$
- (b) A variable plane at a distance of 1 unit from the origin cuts the co-ordinate axes at A, B and C. If there centroid D (x, y, z) of triangle ABC satisfies the relation $\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = k$, then the value of k is

 (A) 3 (B) 1 (C) 1/3 (D) 9 [JEE 2005 (Screening), 3] Find the equation of the plane containing the line 2x - y + z - 3 = 0, 3x + y + z = 5 and at a distance of

- (c) Find the equation of the plane containing the line 2x-y+z-3=0, 3x+y+z=5 and at a distance of $\frac{1}{\sqrt{6}}$ from the point (2,1,-1).

 (d) Incident ray is along the unit vector $\hat{\mathbf{v}}$ and the reflected ray is along the unit vector $\hat{\mathbf{w}}$. The normal is along unit vector $\hat{\mathbf{a}}$ outwards. Express $\hat{\mathbf{w}}$ in terms of $\hat{\mathbf{a}}$ and $\hat{\mathbf{v}}$.

 [JEE 2005 (Mains), 2+4 out of 60] \mathbb{W} Q.21(a) A plane passes through (1, -2, 1) and is perpendicular to two planes 2x-2y+z=0 and $\hat{\mathbf{w}}$ x-y+2z=4. The distance of the plane from the point (1,2,2) is (A) 0 (B) 1 (C) $\sqrt{2}$ (D) $2\sqrt{2}$ (b) Let $\hat{\mathbf{a}} = \hat{\mathbf{i}} + 2\hat{\mathbf{j}} + \hat{\mathbf{k}}$, $\hat{\mathbf{b}} = \hat{\mathbf{i}} \hat{\mathbf{j}} + \hat{\mathbf{k}}$ and $\hat{\mathbf{c}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} \hat{\mathbf{k}}$. A vector in the plane of $\hat{\mathbf{a}}$ and $\hat{\mathbf{b}}$ whose projection on $\hat{\mathbf{c}}$ is $\frac{1}{\sqrt{3}}$, is [JEE 2006,3 marks each] on \vec{c} is $\frac{1}{\sqrt{2}}$, is

(A)	$4\hat{i} - \hat{j} + 4\hat{i}$	4ĺ
_	→ <u>_</u>	

(B)
$$3\hat{i} + \hat{j} - 3\hat{k}$$

(C)
$$2\hat{i} + \hat{j} - 2\hat{k}$$
 (D) $4\hat{i} + \hat{j} - 4\hat{k}$

(D)
$$4\hat{i} + \hat{j} - 4\hat{k}$$

- (c) Let \vec{A} be vector parallel to line of intersection of planes P_1 and P_2 through origin. P_1 is parallel to the vectors $2\hat{j} + 3\hat{k}$ and $4\hat{j} - 3\hat{k}$ and P_2 is parallel to $\hat{j} - \hat{k}$ and $3\hat{i} + 3\hat{j}$, then the angle between vector \vec{A} and $2\hat{i} + \hat{j} - 2\hat{k}$ is
- (B) $\frac{\pi}{4}$
- (C) $\frac{\pi}{6}$

page **57 of 7**7 [JEE 2006, 5

(d) Match the following

- (i) Two rays in the first quadrant x + y = |a| and ax y = 1 intersects each other in the interval $a \in (a_0, \infty)$, the value of a_0 is (ii) Point (α, β, γ) lies on the plane x + y + z = 2. (A) 2

Let
$$\vec{a} = \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}$$
, $\hat{k} \times (\hat{k} \times \vec{a}) = 0$, then $\gamma =$

(iii)
$$\left| \int_{0}^{1} (1 - y^{2}) dy \right| + \left| \int_{1}^{0} (y^{2} - 1) dy \right|$$

(C)
$$\left| \int_{0}^{1} \sqrt{1-x} \, dx \right| + \left| \int_{-1}^{0} \sqrt{1+x} \, dx \right|$$

(iv) If $\sin A \sin B \sin C + \cos A \cos B = 1$,

then the value of $\sin C =$

[JEE 2006, 6]

(e) Match the following

(i)
$$\sum_{i=1}^{\infty} \tan^{-1} \left(\frac{1}{2i^2} \right) = t$$
, then $\tan t =$

(A) 0

(ii) Sides a, b, c of a triangle ABC are in A.P.

and
$$\cos \theta_1 = \frac{a}{b+c}$$
, $\cos \theta_2 = \frac{b}{a+c}$, $\cos \theta_3 = \frac{c}{a+b}$,

then
$$\tan^2 \frac{\theta_1}{2} + \tan^2 \frac{\theta_3}{2} =$$

(B) 1

(iii) A line is perpendicular to x + 2y + 2z = 0 and passes through (0, 1, 0). The perpendicular

distance of this line from the origin is

(C)
$$\frac{\sqrt{5}}{3}$$
 (D) 2/3

[JEE 2006, 6]

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopal Phone: 0 903 903 7779, 0 98930 58881.

ANSWER KEY

$$O.1 \quad x = 2, \quad y = -1$$

Q.7
$$xx_1 + yy_1 = a^2$$

Q.10
$$x = 2, y = -2, z = -2$$

Q.13 (a)
$$\frac{-1}{2}i - \frac{1}{2}j + \frac{1}{\sqrt{2}}k$$

Q.15 (a)
$$\arcsin \frac{1}{3}$$

Q.18
$$-\hat{i} + 2\hat{j} + 5\hat{k}$$

$$\begin{array}{c} \textbf{EXERCISE-1} \\ \textbf{GO} \\ \textbf{Q.1} \\ \textbf{X} = 2 \,, \, y = -1 \\ \textbf{Q.2} \\ \textbf{Q.5} \\ \textbf{Q.6} \\ \textbf{Q.10} \\ \textbf{ANSWER KEY} \\ \textbf{EXERCISE-1} \\ \textbf{(ii)} \text{ the lines intersect at the point p.v.} - 2\hat{\textbf{i}} + 2\hat{\textbf{j}} \\ \textbf{(iii)} \text{ lines are skew} \\ \textbf{Q.5} \\ \textbf{Q.13} \\ \textbf{Q.13} \\ \textbf{(a)} = \frac{1}{2}\hat{\textbf{i}} + \frac{1}{\sqrt{2}}\hat{\textbf{k}} \\ \textbf{Q.15} \\ \textbf{Q.15} \\ \textbf{Q.16} \\ \textbf{Q.15} \\ \textbf{Q.19} \\ \textbf{Q.19} \\ \textbf{Q.19} \\ \textbf{Q.19} \\ \textbf{Q.19} \\ \textbf{Q.25} \\ \textbf{p} = \frac{q(\alpha^3 - 3)}{4}; \text{ decreasing in } q \in (-1, 1), \ q \neq 0 \\ \textbf{EXERCISE-2} \\ \textbf{Q.10} \\ \textbf{Q.20} \\ \textbf{Q.10} \\ \textbf{Q.20} \\ \textbf$$

Q.25
$$p = \frac{q(q^3 - 3)}{4}$$
; decreasing in $q \in (-1, 1), q \neq 0$

Q.5 (i) $\frac{6}{7}\sqrt{14}$ (ii) 6 (iii) $\frac{3}{5}\sqrt{10}$ (iv) $\sqrt{6}$ Q.6 $\frac{11}{\sqrt{170}}$ Q.7 $\frac{4}{\sqrt{2}}\hat{i} - \frac{1}{\sqrt{2}}\hat{j} - \frac{1}{\sqrt{2}}\hat{k}$

Q.1
$$2\sqrt{17}$$

Q.2
$$\pm \frac{1}{3\sqrt{3}}(\hat{i} + 5\hat{j} - \hat{k})$$

Q.10
$$\alpha = n\pi + \frac{(-1)^n \pi}{2}, n \in I \& \beta = 1$$

Q.16
$$\alpha = 2/3$$
; if $\alpha = 0$ then vector product is $-60(2\hat{i} + \hat{k})$

$$Q.18 \quad \textbf{(b)} \left\{ \vec{p} = \frac{\left[\vec{a} \ \vec{b} \ \vec{c} \right]}{\left(\vec{a} . \vec{c} \right) \left(\vec{a} . \vec{b} \right)} \left(\vec{a} + \vec{c} \times \vec{b} \right) + \frac{\left(\vec{b} . \vec{c} \right) \vec{b}}{\left(\vec{a} . \vec{b} \right)} - \frac{\left(\vec{b} . \vec{b} \right) \vec{c}}{\left(\vec{a} . \vec{b} \right)} \right\}$$

$$Q.19 \quad 9 \left(-\frac{\vec{b} \cdot \vec{b} \cdot \vec{c}}{\vec{c} \cdot \vec{b}} \right) = \frac{\vec{b} \cdot \vec{c} \cdot \vec{c}}{\vec{c} \cdot \vec{c}} = \frac{\vec{b} \cdot \vec{c}}{\vec{c} \cdot \vec{c}} = \frac{\vec{c} \cdot \vec{c}}{\vec{c}} = \frac{\vec{c} \cdot \vec{c}}{\vec{c}} = \frac{\vec{c}}{\vec{c}} = \frac{$$

$$(\vec{a}.\vec{c})(\vec{a}.b) \qquad (\vec{a}.b) \qquad (\vec{a}.b)$$

Q.21
$$F = 2a_1 + 3a_2 + 3a_3$$

Q.24
$$p = -\frac{1}{\sqrt{1 + 2\cos\theta}}$$
; $q = \frac{2\cos\theta}{\sqrt{1 + 2\cos\theta}}$; $r = -\frac{1}{\sqrt{1 + 2\cos\theta}}$

or
$$p = \frac{1}{\sqrt{1 + 2\cos\theta}}$$
; $q = -\frac{2\cos\theta}{\sqrt{1 + 2\cos\theta}}$; $r = \frac{1}{\sqrt{1 + 2\cos\theta}}$

Q.25
$$\vec{x} = \frac{\vec{a} + (\vec{c}.\vec{a})\vec{c} + \vec{b} \times \vec{c}}{1 + \vec{c}^2}$$
, $y = \frac{\vec{b} + (\vec{c}.\vec{b})\vec{c} + \vec{a} \times \vec{c}}{1 + \vec{c}^2}$

Q.1
$$\theta = 90^{\circ}$$
 Q.4 $y + 2z = 4$ Q.7 $\frac{x-1}{2} = \frac{y-2}{2} = \frac{z-3}{-3}$

Q.8
$$\frac{x}{1} = \frac{y}{2} = \frac{z}{-1}$$
 or $\frac{x}{-1} = \frac{y}{1} = \frac{z}{-2}$ Q.9 $\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = \frac{1}{p^2}$ Q.10 $\frac{17}{2}$

Q.13 (a)
$$\frac{3}{2}$$
; (b) $\frac{2x}{3} + \frac{2y}{3} - \frac{z}{3} = 1$; (c) $\left(0, \frac{3}{2}, 0\right)$; (d) $x = 2t + 2$; $y = 2t + 1$ and $z = -t + 3$

Q.13 (a)
$$\frac{z}{2}$$
; (b) $\frac{2x}{3} + \frac{2y}{3} - \frac{z}{3} = 1$; (c) $\left[0, \frac{z}{2}, 0\right]$; (d) $x = 2t + 2$; $y = 2t + 1$ and $z = -t + 3$

Q.14
$$(1, -2, -4)$$
 Q.15 $\frac{x}{2} + \frac{y}{3} + \frac{z}{-5} = 1$, Area = $\frac{19}{2}$ sq. units Q.16 $\frac{x-z}{11} = 1$

Q.17
$$2x + 3y + 2 + 4 = 0$$
 Q.18 $p = 3, (2, 1, -3), x + y + 2 = 0$

Q.19
$$\frac{x-7}{22} = \frac{y-2}{5} = \frac{z+1}{-4}$$
 Q.20 $\sqrt{(x^2+y^2+z^2)}$ Q.21 $\frac{2}{3}$

Q.22
$$\frac{x-7}{3} = \frac{y-2}{6} = \frac{z-4}{2}$$
; $\frac{x-7}{2} = \frac{y-2}{-3} = \frac{z-4}{6}$

Q.23 (9, 13, 15); 14;
$$9x - 4y - z = 14$$
 Q.24 $\frac{x - 4}{9} = \frac{y + 1}{-1} = \frac{z - 7}{-3}$

Q.25
$$x-2y+2z-1=0$$
; 2 units

Q.1 (a) 0
Q.2 (a)
$$\vec{z} = \vec{z} \times \vec{z}$$
 : $\vec{z} = \vec{z} \times \vec{z}$: $\vec{z} = \vec{z} \times \vec{z}$ or $\vec{z} \times \vec{z} = \vec{z} \times \vec{z}$: (0.1)

Q.6 (a)
$$\vec{c} = -\sqrt{3} \vec{a} + 2\vec{b}$$
 (b) $\left[\vec{a} \ \vec{b} \ \vec{c} \right]$

Teko Classes, Maths: Suhag R. Kariya (S. R. K. Sir), Bhopal Phone: 0 903 903 7779, 0 98930 58881. page **59 of 77**

Q.8 (i)
$$\pm \hat{i}$$
; (ii) $\frac{\vec{b}}{\vec{b}^2} + \frac{\vec{a} \times \vec{b}}{(\vec{a} \times \vec{b})^2}$; (iii) $\frac{2\pi}{3}$; (iv) $|\vec{M}| = \sqrt{7}$

Q.9 (a)
$$\frac{1}{2} \left(5\hat{\mathbf{i}} - \hat{\mathbf{j}} - 7\hat{\mathbf{k}} \right), \frac{1}{2} \left(-\hat{\mathbf{i}} + 7\hat{\mathbf{j}} - 5\hat{\mathbf{k}} \right); \frac{1}{2} \sqrt{1274} \text{ sq. units}$$
 (b) $\lambda = 0, \ \lambda = -2 \pm \sqrt{29}$

Q.10 (a)
$$\vec{r} = -13\hat{i} + 11\hat{j} + 7\hat{k}$$
; (b) $\frac{5}{7}\hat{i} + \frac{17}{7}\hat{j}$

Q.12 (b)
$$\vec{v}_1 = 2\hat{i}$$
, $\vec{v}_2 = -\hat{i} \pm \hat{j}$, $\vec{v}_3 = 3\hat{i} \pm 2\hat{j} \pm 4\hat{k}$

Q.15 D Q.16 (i)
$$x + y - 2z = 3$$
; (ii) $(6, 5, -2)$

Q.20 (a) B, (b) D; (c)
$$2x - y + z - 3 = 0$$
 and $62x + 29y + 19z - 105 = 0$, (d) $\hat{w} = \hat{v} - 2(\hat{a} \cdot \hat{v}) \hat{a}$