EXERCISE-5

$$\frac{d^2\sqrt{a^2+b^2+c^2}}{|abc|} \qquad (B) \ \frac{d^2\sqrt{a^2+b^2+c^2}}{2|abc|} \qquad (C) \ \frac{d^2\sqrt{a^2+b^2+c^2}}{4|abc|} \qquad (D) \ \text{None of these}$$

(A)

17. The length of projection, of the line segment joining the points (1, -1, 0) and (-1, 0, 1), to the plane 2x + y + 6z = 1, is equal to 255 (C) $\sqrt{\frac{137}{61}}$ 237 (A) 1 (B) V 61 Two systems of rectangular axes have the same origin. If a plane cuts them at distances a, b, c and a_1, b_1, c_1 from the origin, then (A) $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} = \frac{1}{a_1^2} + \frac{1}{b_1^2} + \frac{1}{c_1^2}$ (B) $\frac{1}{a^2} - \frac{1}{b^2} + \frac{1}{c^2} = \frac{1}{a_1^2} - \frac{1}{b_1^2} + \frac{1}{c_1^2}$ of 77 page 61 (C) $a^2 + b^2 + c^2 = a_1^2 + b_1^2 + c_1^2$ (D) $a^2 - b^2 + c^2 = a_1^2 - b_1^2 + c_1^2$ The angle between the plane 2x - y + z = 6 and a plane perpendicular to the planes x + y + 2z = 7 and The non zero value of 'a' for which the lines 2x - y + 3z + 4 = 0 = ax + y - z + 2 and x - 3y + z = 0 = x + 2y + z + 1 are co-planar is : (A) -2
(B) 4
(C) $\frac{\pi}{6}$ (D) $\frac{\pi}{2}$ (C) $\frac{\pi}{6}$ x - y = 3 is : 0 98930 58881. and $\frac{x-1}{1}$ $\frac{1}{3} = \frac{1}{0} = \frac{1}{-1} \quad \text{and} \quad 1 \quad 2 \quad -1$ (A) x + 2y + 3z - 1 = 0(B) x - 2y + 3z + 5 = 0(C) x + y - 3z + 1 = 0(D) x + y + 3z - 1 = 0The equation of the plane bisecting the acute angle between the planes 2x + y + 2z = 9 and 5x + 4y + 12z + 13 = 0 is :
(D) 11x + 33y - 34z - 182 = 0is - $\begin{array}{l} 3x - 4y + 12z + 13 = 0 \text{ is :} \\ (A) \quad 11x + 33y - 34z - 172 = 0 \\ (C) \quad 41x - 7y + 86z - 52 = 0 \end{array}$ (B) 11x + 33y - 34z - 182 = 0(D) 41x - 7y + 86z - 62 = 0The base of the pyramid AOBC is an equilateral triangle OBA with each side equal to $4\sqrt{2}$, 'O' is the origin of the formula origin of reference, AO is perpendicular to the plane of \triangle OBC and $\overrightarrow{AO} = 2$. Then the cosine of the \overrightarrow{AO} angle between the skew straight lines one passing through A and the mid evidence of the \overrightarrow{AO} passing through O and the mid point of BC is : Sir), Bhopal Phone (A) $-\frac{1}{\sqrt{2}}$ (B) 0 (C) The coplanar points A , B , C , D are (2 - x, 2, 2) $\overline{\sqrt{6}}$, (2, 2 - y, $\sqrt{\frac{\sqrt{2}}{2}}$, 2 - z) and (1, 1) (2,2) respectively. Then: = 1(D) none of these Let the centre of the parallelopiped formed by $PA = \hat{i} + 2\hat{j} + 2\hat{k}$; $PB = 4\hat{i} - 3\hat{j} + \hat{k}$; Ľ. Ē $PC = 3\hat{i} + 5\hat{j} - \hat{k}$ is given by the position vector (7, 6, 2). Then the position vector of the point P is: (A) (3, 4, 1) (B) (6, 8, 2) (C) (1, 3, 4) (D) (2, 6, 8) <u>()</u> (A) (3, 4, 1) (B) (6, 8, 2) (C) (1, 3, 4) (D) (2, 6, 8)Taken on side \overrightarrow{AC} of a triangle ABC, a point M such that $\overrightarrow{AM} = \frac{1}{3} \overrightarrow{AC}$. A point N is taken on the side \overrightarrow{CB} such that $\overrightarrow{BN} = \overrightarrow{CB}$ then, for the point of intersection X of $\overrightarrow{AB} & \overrightarrow{MN}$ which of the following Holds good? (A) $\overrightarrow{XB} = \frac{1}{3} \overrightarrow{AB}$ (B) $\overrightarrow{AX} = \frac{1}{3} \overrightarrow{AB}$ (C) $\overrightarrow{XN} = \frac{3}{4} \overrightarrow{MN}$ (D) $\overrightarrow{XM} = 3 \overrightarrow{XN}$ If the acute angle that the vector, $\alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}$ makes with the plane of the two vectors $2\hat{i} + 3\hat{j} - \hat{k} & \hat{k} \hat{i} - \hat{j} + 2\hat{k}$ is $\cot^{-1}\sqrt{2}$ then: (A) $\alpha (\beta + \gamma) = \beta \gamma$ (B) $\beta (\gamma + \alpha) = \gamma \alpha$ (C) $\gamma (\alpha + \beta) = \alpha \beta$ (D) $\alpha \beta + \beta \gamma + \gamma \alpha = 0$ Locus of the point P for which \overrightarrow{OP} represents a vector with direction cosine $\cos \alpha = \frac{1}{2}$ (O' is the origin) is: (A) A circle parallel to y z plane with centre on the x - axis (B) a cone concentric with positive x - axis having vertex at the origin and the slant height equal to the magnitude of the vector (C) a ray emanating from the origin and making an angle of 60° with x - axis (D) a disc parallel to y z plane with centre on x - axis & radius equal to \overrightarrow{OP} sin 60° a disc parallel to y z plane with centre on x – axis & radius equal to OP sin 60^o (D) Equation of the plane passing through A(x₁, y₁, z₁) and containing the line $\frac{x - x_2}{d_1} = \frac{y - y_2}{d_2} = \frac{z - z_2}{d_3}$ is 29.

$$\begin{array}{l} \begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ d_1 & d_2 & d_3 \\ x_1 - x_2 & y_1 - y_2 & z_1 - z_2 \\ d_1 & d_2 & d_3 \\ x_1 - x_2 & y_1 - y_2 & z_1 - z_2 \\ d_1 & d_2 & d_3 \\ x_1 - x_2 & y_1 - y_2 & z_1 - z_2 \\ d_1 & d_2 & d_3 \\ x_1 - x_2 & y_1 - y_2 & z_1 - z_2 \\ d_1 & d_2 & d_3 \\ z_1 & y_1 & z_1 \\ z_2 & y_2 & z_2 \\ z_2 \\ z_1 & z_2 & z_2 \\ z_2 & z_2 \\ z_1 & z_2 & z_2 \\ z_2 & z_2 \\ z_1 & z_2 & z_2 \\ z_2 & z_2 \\ z_1 & z_2 & z_2 \\ z_1 & z_2 & z_2 \\ z_2 & z_2 \\ z_1 & z_2 & z_2 \\ z_2 & z_2 \\ z_1 & z_2 & z_2 \\ z_2 & z_2 & z_2 \\ z_1 & z_1 & z_1 & z_1 \\ z_1 & z_1 & z_1 & z_1 & z_1 \\ z_1 & z_1 & z_1 & z_1 & z_1 \\ z_1 & z_1 & z_1 & z_1 & z_1 \\ z_1 & z_1 & z_1 & z_1 & z_1 \\ z_1 & z_1 & z_1 & z_1 & z_1 & z_1 \\ z_1 & z_1 & z_1 & z_1 & z_1 & z_1 \\ z_1 & z_1 & z_1 & z_1 & z_1 & z_1 \\ z_1 & z_1 & z_1 & z_1 & z_1 \\ z_1 & z_1 & z_1 & z_1 & z_1 \\ z_1 & z_1 & z_1 & z_1 & z_1 \\ z_1 & z_1 & z_1 & z_1 & z_1 \\ z_1 & z_1 & z_1 & z_1 & z_1 \\ z_1 & z_1 & z_1 & z_1 & z_1 \\ z_1 & z_1 & z_1 & z_1 & z_1 \\ z_2 & z_1 & z_1 & z_1 & z_1 \\ z_1 & z_1 & z_1 & z_1 & z_1 \\ z_1 & z_1 & z_1 & z_1 & z_1 \\ z_1 & z_1 & z_1 & z_1 & z_1 \\ z_2 & z_1 & z_1 & z_1 & z_1 \\ z_1 & z_1 & z_1 & z_1 & z_1 \\ z_1 & z_1 & z_1 & z_1 & z_1 \\ z_2 & z_1 & z_1 & z_1 & z_1 \\ z_1 & z_1 & z_1 & z_1 & z_1 \\ z_2 & z_1 & z_1 & z_1 & z_1 \\ z_1 & z_1 & z_1 & z_1 & z_1 \\ z_1 & z_1 & z_1 & z_1 & z_1 \\ z_2 & z_1 & z_1 & z_1 & z_1 \\ z_1 & z_1 & z_1 & z_1 & z_1 \\ z_2 & z_1 & z_1 & z_1 & z_1 \\ z_1 & z_1 & z_1 & z_1 & z_1 \\ z_2 & z_1 & z_1 & z_1 & z_1 \\ z_1 & z_1 & z_1 & z_1 & z_1 \\ z_2 & z_2 & z_1 & z_1 & z_1 \\ z_1 & z_1 & z_1 & z_1 & z_1 & z_1 \\ z_2 & z_1 & z_1 & z_1 & z_1 & z_1 \\ z_1 & z_1 & z_1 & z_1 & z_1 & z_1 \\ z_2 & z_1 & z_1 & z_1 & z_1 & z_1 \\ z_1 & z_1 & z_1 & z_1 & z_1 & z_1 \\ z_1 & z_1 & z_1 & z_1 & z_1 & z_1 & z_1 \\ z_1 & z_1 & z_1 & z_1 & z_1 & z_1 & z_1 \\ z_1 & z_1 \\ z_1 & z_1 \\ z_1 & z_1 & z_1 & z_1 & z_1 & z_1 & z_$$

$$\ell + m + n = 0$$
 and $amn + bn\ell + c\ell m = 0$ is $\frac{\pi}{3}$ if $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0$.

7. Prove that the two lines whose direction cosines are given by the relations $p\ell + qm + rn = 0$ & $a\ell^2 + bm^2 + cn^2 = 0$ are perpendicular if, $p^2(b + c) + q^2(c + a) + r^2(a + b) = 0$ and parallel if q^2 r^2 p^2

$$\frac{-+\frac{1}{b}+--=0}{b} = 0.$$

- Find the plane π passing through the points of intersection of the planes 2x + 3y z + 1 = 0 and x + y 2z + 3 = 0 and is perpendicular to the plane 3x y 2z = 4. Find the image of point (1, 1, 1) in plane π .
- Given parallel planes \vec{r} . $(2\hat{i} \lambda\hat{j} + \hat{k}) = 3$ and \vec{r} . $(4\hat{i} + \hat{j} \mu\hat{k}) = 5$ for what values of α , planes

 $\vec{r} \cdot (\mu_{\hat{i}} - \alpha_{\hat{j}} + 3\hat{k}) = 0 \& \vec{r} \cdot (\alpha_{\hat{i}} - 3\hat{j} + 2\lambda\hat{k}) = 0$ would be perpendicular. The edges of a rectangular parallelepiped are a, b, c; show that the angles between the four diagonals of a regiven by $\cos^{-1} \frac{a^2 \pm b^2 \pm c^2}{a^2 + b^2 \pm c^2}$ are gi

given by
$$\cos^{-1} \frac{1}{a^2 + b^2 + c^2}$$

Prove that the line of intersection of the planes \vec{r} . $(\hat{i} + 2\hat{j} + 3\hat{k}) = 0$ and \vec{r} . $(3\hat{i} + 2\hat{j} + \hat{k}) = 0$ is \vec{k} $\vec{r} = t(\hat{i} - 2\hat{j} + \hat{k})$. Show that the line is equally inclined to \hat{i} and \hat{k} and makes an angle (1/2) sec⁻¹ 3 with. \hat{j} . 98930

12. Find the shortest distance between the lines $\frac{x-1}{2} = \frac{y+1}{3} = z \& \frac{x+1}{3} = (y-2); z = 2$

0

Ŀ.

Teko Classes, Maths : Suhag R. Kariya (S. R.

Show that the line L whose equation is, $\vec{r} = (2\hat{i} - 2\hat{j} + 3\hat{k}) + \lambda(\hat{i} - \hat{j} + 4\hat{k})$ is parallel to the plane $\pi \hat{\vec{r}}$ whose vector $\vec{r} \cdot (\hat{i} + 5\hat{j} + \hat{k}) = 5$. Find the distance between them. A sphere has an equation $|\vec{r} - \vec{a}|^2 + |\vec{r} - \vec{b}|^2 = 72$ where $\vec{a} = \hat{i} + 3\hat{j} - 6\hat{k}$ and $\vec{b} = 2\hat{i} + 4\hat{j} + 2\hat{k}$. Find: 13.

- the radius of the sphere the centre of the sphere 903 (i) (ii)
- perpendicular distance from the centre of the sphere to the plane $\vec{r} \cdot (2\hat{i} + 2\hat{j} \hat{k}) = -3$. (iii) Find the equation of the sphere which is tangential to the plane x - 2y - 2z = 7 at (3, -1, -1) and \bigcirc
- passes through the point (1, 1, -3). P₁ and P₂ are planes passing through origin. L₁ and L₂ also passes through origin. L₁ lies on P₁ not on P₂ and C L₂ lies on P₂ but not on P₁. Show that there exists points A, B, C and whose permutation A'.B'.C' can be C chosen such that [**IIT 2004**] 16. chosen such that [**IIT - 2004**] (i) A is on L_1 , B on P_1 but not on L_1 and C not on P_1 .(ii) A' in on L_2 , B' on P_2 but not on L_2 and C' not on P_2 .
- A parallelopiped 'S' has base points A, B, C and D and upper face points A', B', C' and D'. This parallelopiped of is compressed by upper face A'B'C'D' to form a new parallelopiped 'T' having upper face points A'', B'', C'' and D'. Volume of parallelpiped T is 90 percent of the volume of parallelopiped S. Prove that the locus of 'A''' is a plane. 17. Sir), I

	E >	KÈF	RCI	SE-	-5
	С	2.	А	3.	А
	А	5.	D	6.	В
-	В	8.	В	9.	А
0.	D	11.	А	12.	С
3.	В	14.	В	15.	А
6.	В	17.	В	18.	А
9.	D	20.	А	21.	А
2.	С	23.	D	24.	А
5.	А	26.	С	27.	А
8.	В	29.	AB	30.	ABC
1.	AB	32.	AD	33.	BC
4.	ABCD	35.	BC		

EXERCISE-

 \vec{r} . $(\vec{a}q - p\vec{b}) = 0$ 1. (a + a', b + b', c + c')2. 3. True 4. True $(a) \rightarrow (Q), (b) \rightarrow (P), (c) \rightarrow (S), (d) \rightarrow (R)$ 5. 7x + 13y + 4z - 9 = 0; $\left(\frac{12}{117}, \frac{-78}{117}, \frac{57}{117}\right)$ 8. $\frac{10}{3\sqrt{3}}$ $\frac{3}{\sqrt{59}}$ $\alpha = + 3$ **12.** 13. 9. (iii) $\frac{8}{3}$ 14. (i) (0, 5, 5) (ii) 9 $(x-2)^2 + (y-1)^2 + (z-1)^2 = 5$ 15.

EXERCISE-7 Part : (A) Only one correct option REE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com The lengths of the diagonals of a parallelogram constructed on the vectors $\vec{p} = 2\vec{a} + \vec{b}$ & $\vec{q} = \vec{a} - 2\vec{b}$ where $\vec{a} \ \& \vec{b}$ are unit vectors forming an angle of 60° are: (B) $\sqrt{7} \& \sqrt{13}$ (C) $\sqrt{5} \& \sqrt{11}$ (A) 3 & 4 $\frac{\vec{a}}{\left|\vec{a}\right|^2}$ (A) $|\vec{a}|^2 - |\vec{b}|^2$ (B) $\left[\frac{\vec{a} - \vec{b}}{|\vec{a}| |\vec{b}|}\right]^2$ (C) $\left[\frac{\vec{a} |\vec{a}| - \vec{b} |\vec{b}|}{|\vec{a}| |\vec{b}|}\right]^2$ (D) none A, B, C & D are four points in a plane with pv's \vec{a} , \vec{b} , \vec{c} & \vec{d} respectively such that $(\vec{a} - \vec{d}) \cdot (\vec{b} - \vec{c}) = (\vec{b} - \vec{d}) \cdot (\vec{c} - \vec{a}) = 0$. Then for the triangle ABC, D is its: (A) incentre (B) circumcentre (C) orthocentre (D) centroid Vectors \vec{a} & \vec{b} make an angle $\theta = \frac{2\pi}{3}$. If $|\vec{a}| = 1$, $|\vec{b}| = 2$ then $\{(\vec{a} + 3\vec{b}) \times (3\vec{a} - \vec{b})\}^2 =$ (A) 225 (B) 250 (C) 275 (D) 300 Consider a tetrahedron with faces f_1, f_2, f_3, f_4 . Let $\vec{a}_1, \vec{a}_2, \vec{a}_3, \vec{a}_4$ be the vectors whose magnitudes are respectively equal to the areas of f_1, f_2, f_3, f_4 & whose directions are perpendicular to these faces in the outward direction. Then, (A) $\vec{a}_1 + \vec{a}_2 + \vec{a}_3 + \vec{a}_4 = \vec{a}_4 = \vec{a}_4 + \vec{a}_4$ (C) $\vec{a}_1 + \vec{a}_2 = \vec{a}_3 + \vec{a}_4$ (D) none $(C)\left[\frac{\vec{a} |\vec{a}| - \vec{b} |\vec{b}|}{|\vec{a}| |\vec{b}|}\right]$ 5. (B) $\vec{a}_1 + \vec{a}_3 = \vec{a}_2 + \vec{a}_4$ (C) $\vec{a}_1 + \vec{a}_2 = \vec{a}_3 + \vec{a}_4$ $(A)\vec{a}_1 + \vec{a}_2 + \vec{a}_3 + \vec{a}_4 = 0$ For non-zero vectors \vec{a} , \vec{b} , \vec{c} , $|\vec{a} \times \vec{b} \cdot \vec{c}| = |\vec{a}| |\vec{b}| |\vec{c}|$ holds if and only if; 6. $(C)\vec{a}.\vec{c} = 0, b.\vec{c} = 0$ $(A)\vec{a}.b = 0, b.\vec{c} = 0$ $(B)\vec{c}.\vec{a} = 0, \vec{a}.b = 0$ a . a b.ā $\hat{i} + \hat{k}$, $\vec{c} = \hat{i} + 2\hat{j} - \hat{k}$, then the value of 7. $|f\vec{a} = i + j + k, b = i - i$ ċ.ā (A) 2 (C) 16 (B) 4 If \vec{a} , \vec{b} & \vec{c} are any three vectors, then $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \times \vec{c}$ is true if: 8. (A) b & \vec{c} are collinear (B) $\vec{a} \& \vec{c}$ are collinear (C) $\vec{a} \& \vec{b}$ are collinear (A) $\vec{b} \approx \vec{c}$ are obtained: ($\vec{r} \cdot \vec{i}$) ($\vec{i} \times \vec{r}$) + ($\vec{r} \cdot \vec{j}$) ($\vec{j} \times \vec{r}$) + ($\vec{r} \cdot \vec{k}$) ($\vec{k} \times \vec{r}$) = (A) 0 (B) \vec{r} (C) 2 \vec{r} (D) 3 \vec{r} A point taken on each median of a triangle divides the median in the ratio 1:3 reckoning from the vertex. Then the ratio of the area of the triangle with vertices at these points to that of the original triangle is: (A) 5:13 (B) 25:64 (C) 13:32 (D) none Given a parallelogram ABCD. If $|\vec{AB}| = a$, $|\vec{AD}| = b \& |\vec{AC}| = c$, then $\vec{DB} \cdot \vec{AB}$ has the value: (A) $\frac{3a^2 + b^2 - c^2}{2}$ (B) $\frac{a^2 + 3b^2 - c^2}{2}$ (C) $\frac{a^2 - b^2 + 3c^2}{2}$ (D) none The points whose position vectors are $p\hat{i} + q\hat{j} + r\hat{k}$; $q\hat{i} + r\hat{j} + p\hat{k} \& r\hat{i} + p\hat{j} + q\hat{k}$ are collinear if: (A) p + q + r = 0 (B) $p^2 + q^2 + r^2 - pq - qr - rp = 0$ (D) none of these If $\vec{p} \& \vec{s}$ are not perpendicular to each other and $\vec{r} \times \vec{p} = \vec{q} \times \vec{p} \& \vec{r} \cdot \vec{s} = 0$ then $\vec{r} =$ (A) $\vec{p} \cdot \vec{s}$ (B) $\vec{q} - (\frac{\vec{q} \cdot \vec{s}}{p \cdot \vec{s}}) \vec{p}$ (C) $\vec{q} + (\frac{\vec{q} \cdot \vec{p}}{p \cdot \vec{s}}) \vec{p}$ (D) $\vec{q} + \mu \vec{p}$ for all scalars μ If a, b, c are pth, qth, rth terms of an H.P. and 9. 10. 11. 12. 13. 14.

$$\vec{u} = (q - r)\vec{i} + (r - p)\vec{j} + (p - q)\vec{k}, \vec{v} = \frac{\vec{i}}{a} + \frac{\vec{j}}{b} + \frac{\vec{k}}{c}, \text{ then:}$$
(A) \vec{u}, \vec{v} are parallel vectors
(B) \vec{u}, \vec{v} are orthogonal vectors
(C) $\vec{u}. \vec{v} = 1$
(D) $\vec{u} \times \vec{v} = \vec{i} + \vec{j} + \vec{k}$

page 64 of 77 K. Sir), Bhopal Phone : 0 903 Ē

(D) none

(D) none

 $(D)\vec{a}.b = b.\vec{c} = \vec{c}.\vec{a} =$

a.c

c.*c*

b

ā. b

b.b

c.b

(D) 64

(D) none

15. If
$$\hat{p}$$
, \hat{q} are two noncollinear and nonzero vectors such that $(b-c)x_1\dot{q}+(c-a)\dot{p}+(a-b)\dot{q}=0$, where a , b , care two length of the sides of a triangle, then the triangle is (D) isocoles (A) right angled (B) obtuse angled (C) equilateral (D) isocoles (D) isocoles (C) equilateral (D) isocoles (D) isocoles (D) isocoles (C) equilateral (D) isocoles (D) isocoles (C) equilateral (D) isocoles (D) isocoles

 $\vec{c}_{1} = \vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^{2}} \vec{a} + \frac{\vec{b} \cdot \vec{c}}{|\vec{c}|^{2}} \vec{b}_{1}, \ \vec{c}_{2} = \vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^{2}} \vec{a} - \frac{\vec{b}_{1} \cdot c}{|\vec{b}_{1}|^{2}} \vec{b}_{1}, \ \vec{c}_{3} = \vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{c}|^{2}} \vec{a} + \frac{\vec{b} \cdot \vec{c}}{|\vec{c}|^{2}} \vec{b}_{1},$ $\vec{c}_4 = \vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{c}|^2} \vec{a} - \frac{b \cdot \vec{c}}{|\vec{b}|^2} \vec{b}_1$, then the set of orthogonal vectors is [IIT - 2005] (A) $(\vec{a}, \vec{b}_1, \vec{c}_3)$ (B) $(\vec{a}, \vec{b}_1, \vec{c}_2)$ (C) $(\vec{a}, \vec{b}_1, \vec{c}_1)$ (D) $(\vec{a}, \vec{b}_2, \vec{c}_2)$ (A) (a, b_1, c_3) (b) (a, b_1, c_2) (c) (a, b_1, c_1) (d) (a, b_2, c_2) Let \vec{A} be vector parallel to line of intersection of planes P_1 and P_2 through origin, P_1 is parallel to the vectors \vec{b} $2\hat{i} + 3\hat{k}$ and $4\hat{j} - 3\hat{k}$ and P_2 is parallel to $\hat{j} - \hat{k}$ and $3\hat{i} + 3\hat{j}$, then the angle between vector $\hat{\boldsymbol{\xi}}$ page \vec{A} and $2\hat{i} + \hat{j} - 2\hat{k}$ is [IIT - 2006] (C) $\frac{\pi}{6}$ (D) $\frac{3\pi}{4}$ (A) $\frac{\pi}{2}$ (B) $\frac{\pi}{4}$ 58881. Part : (B) May have more than one options correct If \vec{a} , \vec{b} , \vec{c} & \vec{d} are linearly independent set of vectors & $K_1\vec{a} + K_2\vec{b} + K_3\vec{c} + K_4\vec{d} = 0$ then: $(\vec{C}) K_1 + \vec{K}_4 = K_2 + K_3 = \vec{0}$ (D) none of these (A) $K_1 + K_2 + K_3 + K_4 = 0$ (B) $K_1 + K_3 = K_2 + K_4 = 0$ Given three vectors \vec{a} , \vec{b} , \vec{c} such that they are non-zero, non-coplanar vectors, then which of the following are coplanar. (A) $\vec{a} + \vec{b}$, $\vec{b} + \vec{c}$, $\vec{c} + \vec{a}$ (B) $\vec{a} - \vec{b}$, $\vec{b} + \vec{c}$, $\vec{c} + \vec{a}$ (C) $\vec{a} + \vec{b}$, $\vec{b} - \vec{c}$, $\vec{c} + \vec{a}$ (D) $\vec{a} + \vec{b}$, $\vec{b} - \vec{c}$, $\vec{c} - \vec{a}$ 0 Ē The value(s) of $\alpha \in [0, 2\pi]$ for which vector $\vec{a} = \hat{i} + 3\hat{j} + (\sin 2\alpha)\hat{k}$ makes an obtuse angle with the \vec{b} Z-axis and the vectors $\vec{b} = (\tan \alpha)\hat{i} - \hat{j} + 2\sqrt{\sin \frac{\alpha}{2}}\hat{k}$ and $\vec{c} = (\tan \alpha)\hat{i} + (\tan \alpha)\hat{j} - 3\sqrt{\csc \frac{\alpha}{2}}\hat{k}$ are с. orthogonal, is/are: (A) tan⁻¹ 3 bonal, is/are: ⁻¹3 (B) $\pi - \tan^{-1} 2$ (C) $\pi + \tan^{-1} 3$ (D) $2\pi - \tan^{-1} 2$ lelogram is constructed on the vectors $\vec{p} & \vec{q}$. A vector which coincides with the altitude of the logram & perpendicular to the side \vec{p} expressed in terms of the vectors $\vec{p} & \vec{q}$ is: $\vec{q} \cdot \vec{p}$ \vec{p} (B) $\frac{(\vec{p} \times \vec{q}) \times \vec{p}}{\vec{p}^2}$ (C) $\frac{\vec{q} \cdot \vec{p}}{\vec{p}^2} \vec{p} - \vec{q}$ (D) $\frac{\vec{p} \times (\vec{p} \times \vec{q})}{\vec{p}^2}$ (B) $\frac{\vec{p} \times \vec{q}}{\vec{p}^2}$ (C) $\frac{\vec{q} \cdot \vec{p}}{\vec{p}^2} \vec{p} - \vec{q}$ (D) $\frac{\vec{p} \times (\vec{p} \times \vec{q})}{\vec{p}^2}$ (D) $\frac{\vec{p} \times (\vec{p} \times \vec{q})}{\vec{p}^2}$ (D) $\vec{p} \times (\vec{p} \times \vec{q})$ $\vec{q} \times (\vec{p} \times \vec{p})$ $\vec{q} \times (\vec{p} \times \vec{p})$ (D) $\vec{p} \times (\vec{p} \times \vec{q})$ (D) $\vec{p} \times \vec{q}$ (D) $\vec{q} \times \vec{q} \times \vec{q}$ (D) $\vec{q} \times \vec{q}$ (D) $\vec{q} \times \vec$ A parallelogram is constructed on the vectors $\vec{p} \& \vec{q}$. A vector which coincides with the altitude of the parallelogram & perpendicular to the side \vec{p} expressed in terms of the vectors $\vec{p} \& \vec{q}$ is: (A) d -Identify the statement(s) which is/are incorrect? (A) (B) If \vec{a} and \vec{b} lie in a plane normal to the plane containing the vectors \vec{c} and $\vec{d} \neq \vec{b}$ (C) then $(\vec{a} \times b) \times (\vec{c} \times d) = 0$ If \vec{a} , \vec{b} , \vec{c} and \vec{a}' , \vec{b}' , \vec{c}' are reciprocal system of vectors then \vec{a} . $\vec{b}' + \vec{b}$. $\vec{c}' + \vec{c}$. $\vec{a}' = 3$ (D) If $\mathbf{a} = \hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 4\hat{\mathbf{k}}$, $\vec{\mathbf{b}} = 2\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + \hat{\mathbf{k}}$, $\vec{\mathbf{c}} = \hat{\mathbf{i}} + 4\hat{\mathbf{j}} - 4\hat{\mathbf{k}}$, then the vector $\vec{\mathbf{a}} \times (\vec{\mathbf{b}} \times \vec{\mathbf{c}})$ is orthogonal to: 37.

(A)
$$\dot{a}$$
 (B) \dot{b} (C) \dot{c} (D) $\ddot{a} + \ddot{b} + \ddot{c}$
(H $\ddot{a}, \ddot{b}, \ddot{c}$ are non-zero, non-collinear vectors such that a vector $\ddot{p} = ab$
 $cos(2\pi - (\ddot{a} \land b))$ \ddot{c} and a vector $\ddot{q} = ac cos(\pi - (\ddot{a} \land c))$ \ddot{b} then $p + \ddot{q}$ is
(B) perpendicular to \ddot{a} (C) coplanar with $\ddot{b} \& \dot{c}$ (D) none of these
Which of the following statement(s) is/are true?
(A) If $\dot{n}, \dot{a} = 0$, $\ddot{n}, \ddot{b} = 0$ $\dot{a}, \dot{n}, \dot{c} = 0$ to some non zero vector \ddot{n} , then $(\dot{a} \dot{b}) \dot{c} = 0$
(B) there exist a vector having direction angles $\alpha = 30^{\circ} \& \beta = 45^{\circ}$
(B) there exist a vector having direction angles $\alpha = 30^{\circ} \& \beta = 45^{\circ}$
(D) the vertices of a regular tertahedron are CABC where 'O 'is the origin. The vector
 $\vec{O}A + \vec{O}B + \vec{O}C$ is perpendicular to the plane ABC.
In a ΔABC , let M be the mid point of segment AB and let D be the foot of the bisector of $\angle C$. Then the
more traino $\frac{Area}{ACDM}$ is:
 $ratio $\frac{Area}{ACDM}$ is:
 $ratio $\frac{Area}{ACDM}$ is:
 $ratio $\frac{Area}{ACDM}$ is:
 $ratio \frac{Area}{ACDM}$ is:
 $ratio $\frac{Area}{ACDM}$ is:
 $ratio $\frac{Area}{A}$ is:
 $ratio $\frac{Ar$$$

		pair and vector \vec{d} is not coplanar with vectors \vec{a} , \vec{b} & \vec{c} and $(\vec{a} \cdot \vec{b}) = (\vec{b} \cdot \vec{c}) = \frac{\pi}{3}$, $(\vec{d} \cdot \vec{a}) = \alpha$, $(\vec{d} \cdot \vec{b}) = \beta$,					
E		prove that $(\vec{d}, \vec{c}) = \cos^{-1}(\cos\beta - \cos\alpha)$.					
0.00	13.	If \vec{p} , \vec{q} & \vec{r} are three non-coplanar vectors, prove that,					
IthsBySuhag	14.	$\vec{a} \times \vec{b} = \frac{1}{\sqrt{\left[\vec{q} \times \vec{r} , \vec{r} \times \vec{p} , \vec{p} \times \vec{q}\right]}} \begin{vmatrix} \vec{p} & \vec{q} & \vec{r} \\ \vec{p} \cdot \vec{a} & \vec{q} \cdot \vec{a} & \vec{r} \cdot \vec{a} \\ \vec{p} \cdot \vec{b} & \vec{q} \cdot \vec{b} & \vec{r} \cdot \vec{b} \end{vmatrix}$ Consider the non zero vectors \vec{a} , \vec{b} , $\vec{c} \& \vec{d}$ such that no three of which are coplanar then prove that \vec{a} [$\vec{b} \ \vec{c} \ \vec{d}$] + \vec{c} [$\vec{a} \ \vec{b} \ \vec{d}$] = \vec{b} [$\vec{a} \ \vec{c} \ \vec{d}$] + \vec{d} [$\vec{a} \ \vec{b} \ \vec{c}$]. Hence prove that \vec{a} , \vec{b} , $\vec{c} \& \vec{d}$ represent the position vectors					
www.Ma	15.	of the vertices of a plane quadrilateral if and only if $\frac{[\vec{b} \ \vec{c} \ \vec{d}] + [\vec{a} \ \vec{b} \ \vec{d}]}{[\vec{a} \ \vec{c} \ \vec{d}] + [\vec{a} \ \vec{b} \ \vec{c}]} = 1$. Solve the following equation for the vector \vec{p} ; $\vec{p} \ x \ \vec{a} + (\vec{p} \ \vec{b}) \ \vec{c} = \vec{b} \ x \ \vec{c}$ where \vec{a} , \vec{b} , \vec{c} are non zero non coplanar of the vector \vec{p} if $\vec{p} \ x \ \vec{a} + (\vec{p} \ \vec{b}) \ \vec{c} = \vec{b} \ x \ \vec{c}$ where \vec{a} , \vec{b} , \vec{c} are non zero non coplanar of the vector \vec{p} if $\vec{p} \ x \ \vec{a} + (\vec{p} \ \vec{b}) \ \vec{c} = \vec{b} \ x \ \vec{c}$ where \vec{a} , \vec{b} , \vec{c} are non zero non coplanar of the vector $\vec{p} \ \vec{c} \ \vec{p} \ \vec{c} \ \vec{c}$ and $\vec{c} \ \vec{c} \ \vec{c} \ \vec{c}$ and $\vec{c} \ \vec{c} \ \vec{c} \ \vec{c} \ \vec{c} \ \vec{c}$ and $\vec{c} \ \vec{c} \ $					
ss.com &		vectors and \vec{a} is neither perpendicular to \vec{b} nor to \vec{c} , hence show that $\begin{bmatrix} \vec{p} \times \vec{a} + \frac{[\vec{a} \cdot \vec{b} \cdot \vec{c}]}{\vec{a} \cdot \vec{c}} \cdot \vec{c} \end{bmatrix}$ is perpendicular of \vec{b}					
SSE	16.	$\mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} $					
<oclassical distribution="" of="" s<="" second="" td="" the=""><td></td><td colspan="6">(i) $[\vec{a} \ \vec{b} \ \vec{c}] [\vec{a}' \ \vec{b}' \ \vec{c}'] = 1$ (ii) $(\vec{a}' \times \vec{b}') + (\vec{b}' \times \vec{c}') + (\vec{c}' \times \vec{a}') = \frac{\vec{a} + \vec{b} + \vec{c}}{[\vec{a}\vec{b}\vec{c}]}$.</td></oclassical>		(i) $[\vec{a} \ \vec{b} \ \vec{c}] [\vec{a}' \ \vec{b}' \ \vec{c}'] = 1$ (ii) $(\vec{a}' \times \vec{b}') + (\vec{b}' \times \vec{c}') + (\vec{c}' \times \vec{a}') = \frac{\vec{a} + \vec{b} + \vec{c}}{[\vec{a}\vec{b}\vec{c}]}$.					
Te	17.	Let $\vec{A} = 2i + k$; $\vec{B} = i + j + k \& \vec{C} = 4i - 3j + 7k$. Determine a vector \vec{R} satisfying $\vec{R} \times \vec{B} = \vec{C} \times \vec{B} \& \vec{R} \cdot \vec{A} = 0$					
Š	18.	For any two vectors $\vec{u} & \vec{v}$, prove that [IIT - 1998] \vec{e}					
Š	19.	(a) $(\vec{u}.\vec{v})^2 + \vec{u} \times \vec{v} ^2 = \vec{u} ^2 \vec{v} ^2$ (b) $(1 + \vec{u} ^2)(1 + \vec{v} ^2) = (1 - \vec{u}.\vec{v})^2 + \vec{u} + \vec{v} + (\vec{u} \times \vec{v}) ^2$ Let ABC and PQR be any two triangles in the same plane. Assume that the perpendiculars from the \vec{o}					
 Ф		points A, B, C to the sides QR, RP, PQ respectively are concurrent. Using vector methods or otherwise, Q prove that the perpendiculars from P, Q, R to BC, CA, AB respectively are also concurrent. [IIT - 2000]					
sit	20.	Find 3 – dimensional vectors $\vec{v}_1, \vec{v}_2, v_3$ satisfying					
veb		$\vec{v}_1 \cdot \vec{v}_1 = 4, \ \vec{v}_1 \cdot \vec{v}_2 = -2, \ \vec{v}_1 \cdot \vec{v}_3 = 6, \ \vec{v}_2 \cdot \vec{v}_2 = 2, \ \vec{v}_2 \cdot \vec{v}_3 = -5, \ \vec{v}_3 \cdot \vec{v}_3 = 29.$ [IIT - 2001] \overleftarrow{o}					
2	21.	If \hat{u} , \hat{v} , \hat{w} be three non-coplanar unit vectors with angles between $\hat{u} & \hat{v}$ is α , between $\hat{v} & \hat{w}$ is $\beta \vec{n}$.					
Į		and between w & \ddot{u} is γ . If \ddot{a} , b, \vec{c} are the unit vectors along angle bisectors of α , β , γ respectively, $\dot{\omega}$					
kage		then prove that, $\begin{bmatrix} \vec{a} \times \vec{b} & \vec{b} \times \vec{c} & \vec{c} \times \vec{a} \end{bmatrix} = \frac{1}{16} \begin{bmatrix} \hat{u} & \hat{v} & \hat{w} \end{bmatrix}^2 \sec^2 \begin{bmatrix} \frac{u}{2} \\ \frac{u}{2} \end{bmatrix} \sec^2 \begin{bmatrix} \frac{u}{2} \\ \frac{u}{2} \end{bmatrix} \sec^2 \begin{bmatrix} \frac{u}{2} \\ \frac{u}{2} \end{bmatrix} \cdot \begin{bmatrix} \text{IIT - 2003} \end{bmatrix}$					
acl							
⊥ ∑							
ituc	1. B	2. B 3. C 4. D 5. A 6. D EXERCISE-8					
С С	7. C	8. B 9. A 10. B 11. A 12. B 14 P 15 C 16 P 17 C 19 A 3. p=0; q=10; r=-3					
oa	19. D	20. B 21. A 22. C 23. C 24. C 4. -98 6. 3					
N	25. B	26. A 27. B 28. D 29. ABC 20. $\vec{v}_1 = 2\hat{i}, \vec{v}_2 = -\hat{i} \pm \hat{i}, \vec{v}_2 = 3\hat{i} \pm 2\hat{i} \pm 4\hat{k}$ are some					
0 0	30. B	CD 31. AD 32. ABC 33. AB 34. BD possible values					
Ш	35. BI	D 36. ACD 37. AD 38. BC 39. ACD					
Ш	40. B0	C 41. AD					
Ш							