Assertion- Reason

Some questions (Assertion-Reason type) are given below. Each question contains Statement - $\mathbf{1}$ (Assertion) and Statement - 2 (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct. So select the correct choice :Choices are :
(A)Statement - $\mathbf{1}$ is True, Statement - $\mathbf{2}$ is True; Statement $\mathbf{- 2}$ is a correct explanation for Statement $\mathbf{- 1}$.
(B)Statement - $\mathbf{1}$ is True, Statmnt $\mathbf{- 2}$ is True; Statement $\mathbf{- 2}$ is NOT a correct explanation for Statement -1.
(C) Statement - $\mathbf{1}$ is True, Statement - $\mathbf{2}$ is False.
(D) Statement -1 is False, Statement -2 is True.
452. Let $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ be three non-coplanar vectors then $(\overline{\mathrm{b}}-\overline{\mathrm{c}}) \cdot[(\overline{\mathrm{c}}-\overline{\mathrm{a}}) \times(\overline{\mathrm{a}}-\overline{\mathrm{b}})]=0$

Statement 1: $\overline{\mathrm{b}}-\overline{\mathrm{c}}$ can be expressed as linear combination of $\overline{\mathrm{c}}-\overline{\mathrm{a}}$ and $\overline{\mathrm{a}}-\overline{\mathrm{b}}$.
Statement 2: Given non-coplanar vectors one vector can be expressed as a linear combination of other two.
453. A vector has components p and 1 with respect to a rectangular cartesian system. If the axes are rotated through an angle α about the origin in the anticlockwise sense.
Statement-1 : If the vector has component $\mathrm{p}+2$ and 1 with respect to the new system then $\mathrm{p}=-1$
Statement-2 : Magnitude of vector original and new system remains same
454. Let $|\vec{a}|=4,|\vec{b}|=2$ and angle between \vec{a} and \vec{b} is $\pi / 6$

Statement-1 : $(\vec{a} \times \vec{b})^{2}=4$
Statement-2 : $(\vec{a} \times \vec{b})^{2}=|\vec{a}|^{2}$
455. Statement-1: $\left[\begin{array}{lll}\vec{b} \times \vec{c} & \vec{c} \times \vec{a} & \vec{a} \times \vec{b}\end{array}\right]=0$

Statement-2 : If $\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{r}}$ are linearly dependent vectors then they are coplanar.
456. Statement-1 : If $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$ then \vec{a} is parallel to \vec{b}.

Statement-2 : If $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$ then $\vec{a} \cdot \vec{b}=0$.
457. Let \vec{r} be a non-zero vector satisfying $\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{c}}=0$ for given non-zero vectors $\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{b}}$ and $\overrightarrow{\mathrm{c}}$.

Statement-1: \vec{a}, \vec{b} and \vec{c} are coplanar vectors.
Statement-2 : $\overrightarrow{\mathrm{r}}$ is perpendicular to the vectors $\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{b}}$ and $\overrightarrow{\mathrm{c}}$.
458. Let \vec{a} and \vec{r} be two non-collinear vectors.

Statement-1: vector $\vec{a} \times(\vec{a} \times \vec{r})$ is a vector in the plane of \vec{a} and \vec{r}, perpendicular to \vec{a}.
Statement-2 : $\vec{a} \times(\vec{a} \times \vec{b})=\overrightarrow{0}$, for any vector \vec{b}.
459. Statement-1 : If three points P, Q, R have position vectors $\vec{a}, \vec{b}, \vec{c}$ respectively and $2 \vec{a}+3 \vec{b}-5 \vec{c}=0$, then the points P, Q, R must be collinear. Statement-2 : If for three points $\mathrm{A}, \mathrm{B}, \mathrm{C} ; \overrightarrow{\mathrm{AB}}=\lambda \overrightarrow{\mathrm{AC}}$, then the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ must be collinear.
460. Statement-1 : Let \vec{a} and \vec{b} be two non collinear unit vectors. If $\vec{u}=\vec{a}-(\vec{a} \cdot \vec{b}) \vec{b}$ and $\vec{v}=\vec{a} \times \vec{b}$ then $|\overrightarrow{\mathrm{v}}|=|\overrightarrow{\mathrm{u}}|$.
Statement-2 : The vector $\frac{1}{3}(2 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\hat{\mathrm{k}})$ is makes an angle of $\frac{\pi}{3}$ with the vector $(5 \hat{i}-4 \hat{j}+3 \hat{k})$.
461. Statement-1: If $\overrightarrow{\mathrm{u}} \& \overrightarrow{\mathrm{v}}$ are unit vectors inclined at an angle α and $\overrightarrow{\mathrm{x}}$ is a unit vector bisecting the angle between them, then $\overrightarrow{\mathrm{x}}=\frac{\overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{v}}}{2 \cos \frac{\alpha}{2}}$
Statement-2: If $\triangle \mathrm{ABC}$ is an isosceles triangle with $\mathrm{AB}=\mathrm{AC}=1$, then vector representing bisector of angle A is given by $\overrightarrow{A D}=\frac{A \vec{B}+A \vec{C}}{2}$
462. Statement-1: The direction ratios of line joining origin and point (x, y, z) must be x, y, z.

Statement-2: If P is a point (x, y, z) in space and $O P=r$, then direction cosines of $O P$ are $\frac{x}{r}, \frac{y}{r}, \frac{z}{r}$.
463. Statement-1: If the vectors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}+2 \hat{j}-3 \hat{k}$ and $3 \hat{i}-\lambda \hat{j}+5 \hat{k}$ are coplanar, then $|\lambda|^{2}$ is equal to 16 .

Statement-2: The vectors \vec{a}, \vec{b} and \vec{c} are coplanar iff $\vec{a},(\vec{b} \times \vec{c})=0$
464. Statement-1: A line L is perpendicular to the plane $3 x-4 y+5 z=10$

Statement-2: Direction co-sines of L be $<\frac{3}{5 \sqrt{2}},-\frac{4}{5 \sqrt{2}}, \frac{1}{\sqrt{2}}>$
465. Statement-1 : The points with position vectors $\vec{a}-2 \vec{b}+3 \vec{c},-2 \vec{a}+3 \vec{b}-\vec{c}, 4 \vec{a}-7 \vec{b}+7 \vec{c}$ are collinear.

Statement-2: The position vectors $\vec{a}-2 \vec{b}+3 \vec{c},-2 \vec{a}+3 \vec{b}-\vec{c}, 4 \vec{a}-7 \vec{b}+7 \vec{c}$ are linearly dependent vectors.
466. Statement-1: If $\vec{a}, \vec{b}, \vec{c}$ are three unit vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{1}{2} \vec{b}$ then the angle between $\vec{a} \& \vec{b}$ is $\pi / 2$

Statement-2: If $\vec{a} \times(\vec{b} \times \vec{c})=\frac{1}{2} \vec{b}$, then $\vec{a} \cdot \vec{b}=0$.
467. Statement-1: If $\cos \alpha, \cos \beta, \cos \gamma$ are the direction cosine of any line segment, $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$.

Statement-2: If $\cos \alpha, \cos \beta, \cos \gamma$ are the direction cosine of line segment,
$\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma=-1$.
468. Statement-1: The direction cosines of one of the angular bisector of two intersecting lines having direction cosines as $l_{1}, \mathrm{~m}_{1}, \mathrm{n}_{1}, \& l_{2}, \mathrm{~m}_{2}, \mathrm{n}_{2}$ is proportional to $l_{1}+l_{2}, \mathrm{~m}_{1}+\mathrm{m}_{2}, \mathrm{n}_{1}+\mathrm{n}_{2}$.
Statement-2: The angle between the two intersecting lines having direction cosines as $l_{1}, \mathrm{~m}_{1}, \mathrm{n}_{1} \& l_{2}, \mathrm{~m}_{2}, \mathrm{n}_{2}$ is given by $\cos \theta=l_{1} l_{2}+\mathrm{m}_{1} \mathrm{~m}_{2}+\mathrm{n}_{1} \mathrm{n}_{2}$.
469. Statement-1: If $\vec{a} \cdot \vec{b}=0 \Rightarrow \vec{a} \perp \vec{b} \quad$ Statement-2: $\vec{a} \cdot \vec{b}=0 \Rightarrow$ either $\vec{a}=0$ or $\vec{b}=0$ or $\vec{a} \perp \vec{b}$
470. Statement-1: $\vec{A} \times \vec{B}=\vec{B} \times \vec{A}$

Statement-2: $\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}=|\overrightarrow{\mathrm{A}}||\overrightarrow{\mathrm{B}}| \sin \theta \hat{n}$, when θ is angle, when your fingers curls from A to B
471. Statement-1 : A vector \perp^{r} the plane of $(1,-1,0),(2,1,-1) \&(-1,1,2)$ is $6 \hat{\mathrm{i}}+6 \hat{\mathrm{k}}$

Statement-2 : $\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}$ always gives a vector perpendicular to plane of $\overrightarrow{\mathrm{A}} \& \overrightarrow{\mathrm{~B}}$
472. Statement-1: Angle between planes $\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{n}}_{1}=\overrightarrow{\mathrm{q}}_{1} \& \overrightarrow{\mathrm{r}} . \overrightarrow{\mathrm{n}}_{2}=\overrightarrow{\mathrm{q}}_{2}$.
(acute angle) is given by $\cos \theta=\overrightarrow{\mathrm{n}}_{1} \cdot \overrightarrow{\mathrm{n}}_{2}$
Statement-2 : Angle between the planes in same as acute angle formed by their normals.
473. Statement-1: In $\triangle \mathrm{ABC}, \overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}+\overrightarrow{\mathrm{CA}}=0$

Statement-2 : If $\overrightarrow{\mathrm{OA}}=\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{OB}}=\overrightarrow{\mathrm{b}}$ then $\overrightarrow{\mathrm{AB}}=\vec{a}+\vec{b}$
474. Statement-1: $\vec{a}=3 \vec{i}+p \vec{j}+3 \vec{k}$ and $\vec{b}=2 \vec{i}+3 \vec{j}+q \vec{k}$ are parallel vectors it $p=9 / 2$ and $q=2$.

Statement-2 : If $\vec{a}=a_{1} \vec{i}+a_{2} \vec{j}+a_{3} \vec{k}$ and $\vec{b}=b_{1} \vec{i}+b_{2} \vec{j}+b_{3} \vec{k}$ are parallel $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}=\frac{a_{3}}{b_{3}}$
475. Statement-1: The direction ratios of line joining origin and point (x, y, z) must be x, y, z

Statement-2: If P is a point (x, y, z) in space and $O P=r$ then directions cosines of $O P$ are $\frac{x}{r}, \frac{y}{r}, \frac{z}{r}$
476. Statement-1: The shortest distance between the skew lines $\vec{r}=\vec{a}+\alpha \vec{b}$ and $\vec{r}=\vec{c}+\beta \vec{d}$ is $\frac{|[\vec{a}-\vec{c} \vec{b} \vec{d}]|}{|\vec{b} \times d|}$

Statement-2: Two lines are skew lines if three axist no plane passing through them.
477. Statement-1: $\vec{a}=\hat{i}+p \hat{j}+2 \hat{k}, \vec{b}=2 \hat{i}+3 \hat{j}+q \hat{k}$ are parallel vectors of $p=3 / 2$ and $q=4$.

Statement-2: $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ are parallel if $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}=\frac{a_{3}}{b_{3}}$.
478. Statement-1: If $\vec{a}=2 \hat{i}+\hat{k}, \vec{b}=3 \hat{j}+4 \hat{k}$ and $\vec{c}=8 \hat{i}-3 \hat{j}$ are coplanar then $\vec{c}=4 \vec{a}-\vec{b}$.

Statement-2: A set of vectors $\overrightarrow{\mathrm{a}}_{1}, \overrightarrow{\mathrm{a}}_{2} \ldots \overrightarrow{\mathrm{a}}_{\mathrm{n}}$ is said to be linearly independent if every relation of the form $l_{1} \overrightarrow{\mathrm{a}}_{1}+l_{2}$ $\overrightarrow{\mathrm{a}}_{2}+\ldots+l_{\mathrm{n}} \overrightarrow{\mathrm{a}}_{\mathrm{n}}=0$ implies that $l_{1}=l_{2}=\ldots=l_{\mathrm{n}}=0$ (scalars).
479. Statement-1: The shortest distance between the skew lines $\vec{r}=\vec{a}+\alpha \vec{b}$ and $\vec{r}=\vec{c}+\beta \vec{d}$ is $\left|\frac{(\vec{a}-\vec{c}) \cdot(\vec{b} \times \vec{d})}{|\vec{b} \times \vec{d}|}\right|$

Statement-2: Two lines are skew lines if there exists no plane passing through them.
480. Statement-1: The curve which is tangent to a sphere at a given point is the equation of a plane.

Statement-2: Infinite number of lines touch the sphere at a given point.
481. Statement-1: In $\triangle \mathrm{ABC} \overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}+\overrightarrow{\mathrm{CA}}=\overrightarrow{\mathrm{O}}$

Statement-2: If $\overrightarrow{\mathrm{OA}}=\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{OB}}=\overrightarrow{\mathrm{b}}$, then $\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}$ (Δ law of addition).
482. Statement-1: $\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}+\mathrm{pj}+2 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}=2 \hat{i}+3 \hat{j}+q \hat{k}$ are parallel vectors if $P=\frac{3}{2}, q=4$

Statement-2: If $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ are parallel then $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}=\frac{a_{3}}{b_{3}}$.
483. Statement-1: If $\vec{a}=2 \hat{i}+\hat{k} \vec{a}_{1}, \vec{a}_{3}, \vec{a}_{3} \ldots . . \vec{a}_{n}, \vec{b}=3 \hat{j}+4 \hat{k}$ and $\vec{c}=8 \hat{\dot{i}}-3 \hat{j}$ are coplanar then $\vec{c}=4 \vec{a}-\vec{b}$

Statement-2: A set of vectors is said to be linearly independent if every relation of the form
$l_{1} \overrightarrow{\mathrm{a}}+l_{2} \overrightarrow{\mathrm{a}}_{2}+\ldots . .+l_{\mathrm{n}} \overrightarrow{\mathrm{a}}_{\mathrm{n}}=0 \Rightarrow l_{1}=l_{2}=\ldots . .=l_{\mathrm{n}}=0$.
484. Statement-1: The shortest distance between the skew lines $\vec{r}=\vec{a}_{1}+\alpha \vec{b}_{1}$ and $\vec{r}=\vec{a}_{2}+\beta \vec{b}_{2}$ is $\left|\frac{\left[\vec{b}_{1} \overrightarrow{\mathrm{~b}}_{2}\left(\overrightarrow{\mathrm{a}}_{2}-\overrightarrow{\mathrm{a}}_{1}\right)\right]}{\left(\overrightarrow{\mathrm{b}}_{1} \times \overrightarrow{\mathrm{b}}_{2}\right)}\right|$ Statement-2: Two lines are skew lines if there exists no plane passing through them.
485. Statement-1: The value of expression $\hat{\mathbf{i}}(\hat{\mathrm{j}} \times \hat{\mathrm{k}})+\hat{\mathrm{j}}(\hat{\mathrm{k}} \times \hat{\mathrm{i}})+\hat{\mathrm{k}}(\hat{\mathrm{i}} \times \hat{\mathrm{j}})=3$

Statement-2: $\hat{\mathrm{i}}(\hat{\mathrm{j}} \times \hat{\mathrm{k}})=[\hat{\mathrm{i}} . \hat{\mathrm{j}} \cdot \hat{\mathrm{k}}]=1$
486. Statement-1: A relation between the vectors \vec{r}, \vec{a} and \vec{b} is $\vec{r} \times \vec{a}=\vec{b} \Rightarrow \vec{r}=\frac{\vec{a} \times \vec{b}}{\vec{a} \cdot \vec{a}}$ Statement-2 : $\vec{r} \cdot \vec{a}=0$

3-Dimension

487. The equation of two straight line are $\frac{x-1}{2}=\frac{y+3}{1}=\frac{z-2}{-3}$ and $\frac{x-2}{1}=\frac{y-1}{-3}=\frac{z+3}{2}$

Statement-1 : The given lines are coplanar
Statement-2 : The equation $2 x_{1}-y_{1}=1, x_{1}+3 y_{1}=4,3 x_{1}+2 y_{1}=5$ are consistent.
488. Statement-1 : The distance between the planes $4 x-5 y+3 z=5$ and $4 x-5 y+3 z+2=0$ is $\frac{3}{5 \sqrt{2}}$.

Statement-2 The distance between $a x+b y+c z+d_{1}=0$ and $a x+b y+c z+d_{2}$
$=0$ is $\left|\frac{\mathrm{d}_{1}-\mathrm{d}_{2}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}}\right|$.
489. Given the line $\frac{x-1}{3}=\frac{y+1}{2}=\frac{z-3}{-1}$ and the plane $\pi: x-2 y-z=0$

Statement-1: L lies in π
Statement-2: L is parallel to π
490. The image of the point $(1, b, 3)$ in the Statement-1: Line $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$ will be $(1,0,7)$

Statement-2: Length of the perpendicular from the point $A(\bar{\alpha})$ on the line $\vec{r}=\vec{a}+t \vec{b}$, is given by $d=$ $\frac{|(\overline{\mathrm{a}}-\bar{\alpha}) \times \overline{\mathrm{b}}|}{|\overline{\mathrm{b}}|}$

Answer

$452 . \mathrm{C}$	$453 . \mathrm{A}$	$454 . \mathrm{D}$	$455 . \mathrm{D}$	$456 . \mathrm{D}$	$457 . \mathrm{A}$	$458 . \mathrm{C}$
$459 . \mathrm{A}$	$460 . \mathrm{C}$	$461 . \mathrm{A}$	$462 . \mathrm{A}$	$463 . \mathrm{A}$	$464 . \mathrm{A}$	$465 . \mathrm{A}$
$466 . \mathrm{A}$	$467 . \mathrm{B}$	$468 . \mathrm{B}$	$469 . \mathrm{D}$	$470 . \mathrm{D}$	$471 . \mathrm{A}$	$472 . \mathrm{A}$
$473 . \mathrm{C}$	$474 . \mathrm{A}$	$475 . \mathrm{A}$	$476 . \mathrm{B}$	$477 . \mathrm{A}$	$478 . \mathrm{B}$	$479 . \mathrm{B}$
$480 . \mathrm{A}$	$481 . \mathrm{C}$	$482 . \mathrm{A}$	$483 . \mathrm{B}$	$484 . \mathrm{B}$	$485 . \mathrm{A}$	$486 . \mathrm{A}$
$487 . \mathrm{A}$	$488 . \mathrm{D}$	$489 . \mathrm{C}$	$490 . \mathrm{B}$			

Que from Compt. Exams

Co-ordinate Geometry of Three Dimensions

1. The direction cosines of a line segment $A B$ are $-2 / \sqrt{17}, 3 / \sqrt{17},-2 / \sqrt{17}$. If $A B=\sqrt{17}$ and the co-ordinates of A are (3,6,10), then the co-ordinates of B are
(a) $(1,-2,4)$
(b) $(2,5,8)$
(c)
$(-1,3,-8)$
(d) $(1,-3,8)$
2. The projection of any line on co-ordinate axes be respectively $3,4,5$ then its length is
[MP PET 1995; RPET 2001]
(a) 12
(b) 50
(c) $\quad 5 \sqrt{2}$
(d) None of these
3. If centroid of the tetrahedron $O A B C$, where A, B, C are given by $(a, 2,3),(1, b, 2)$ and $(2,1, c)$ respectively be $(1,2,-1)$, then distance of $P(a, b, c)$ from origin is equal to
(a) $\sqrt{107}$
(b) $\sqrt{14}$
(c) $\quad \sqrt{107 / 14}$
(d) None of these
4. If $P \equiv(0,1,0), Q \equiv(0,0,1)$, then projection of $P Q$ on the plane $x+y+z=3$ is
[EAMCET 2002]
(a) $\sqrt{3}$
(b) 3
(c) $\sqrt{2}$
(d)
2
5. The points $A(4,5,1), B(0,-1,-1), C(3,9,4)$ and $D(-4,4,4)$ are
(a) Collinear
(b) Coplanar
(c) Non- coplanar
(d) Non- Collinear and non-coplanar
6. The angle between two diagonals of a cube will be [MP PET 1996, 2000; RPET 2000, 02; UPSEAT 2004]
(a) $\sin ^{-1} 1 / 3$
(b) $\cos ^{-1} 1 / 3$
(c) Variable
(d)
None of these
7. The equations of the line passing through the point $(1,2,-4)$ and perpendicular to the two lines $\frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7}$ and $\frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}$, will be

[AI CBSE 1983]

(a) $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z+4}{6}$
(b) $\frac{x-1}{-2}=\frac{y-2}{3}=\frac{z+4}{8}$
(c) $\quad \frac{x-1}{3}=\frac{y-2}{2}=\frac{z+4}{8}$
(d) None of these
8. If three mutually perpendicular lines have direction cosines $\left(l_{1}, m_{1}, n_{1}\right),\left(l_{2}, m_{2}, n_{2}\right)$ and $\left(l_{3}, m_{3}, n_{3}\right)$, then the line having direction cosines $l_{1}+l_{2}+l_{3}, m_{1}+m_{2}+m_{3}$ and $n_{1}+n_{2}+n_{3}$ make an angle of with each other
(a) 0°
(b) 30°
(c) 60°
(d) 90°
9. The straight lines whose direction cosines are given by $a l+b m+c n=0, f m n+g n l+h l m=0$ are perpendicular, if
(a) $\frac{f}{a}+\frac{g}{b}+\frac{h}{c}=0$
(b) $\sqrt{\frac{a}{f}}+\sqrt{\frac{b}{g}}+\sqrt{\frac{c}{h}}=0$ (c)
$\sqrt{a f}=\sqrt{b g}=\sqrt{c h}$
(d) $\sqrt{\frac{a}{f}}=\sqrt{\frac{b}{g}}=\sqrt{\frac{c}{h}}$
10. If the straight lines $x=1+s, \quad y=-3-\lambda s, \quad z=1+\lambda s$ and $x=t / 2, y=1+t, z=2-t$, with parameters s and t respectively, are co-planar, then λ equals [AIEEE 2004]
(a) 0
(b) -1
(c) $\quad-1 / 2$
(d) -2
11. The co-ordinates of the foot of perpendicular drawn from point $P(1,0,3)$ to the join of points $A(4,7,1)$ and $B(3,5,3)$ is [RPET 01]
(a) $(5,7,1)$
(b) $\left(\frac{5}{3}, \frac{7}{3}, \frac{17}{3}\right)$
(c) $\quad\left(\frac{2}{3}, \frac{5}{3}, \frac{7}{3}\right)$
(d) $\quad\left(\frac{5}{3}, \frac{2}{3}, \frac{7}{3}\right)$
12. If the lines $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-k}{1}=\frac{z}{1}$ intersect, then $k=$
(a) $\frac{2}{9}$
(b) $\frac{9}{2}$
(c) 0
(d) None of these
13. A square $A B C D$ of diagonal $2 a$ is folded along the diagonal $A C$ so that the planes $D A C$ and $B A C$ are at right angle. The shortest distance between $D C$ and $A B$ is [Kurukshetra CEE 1998]
(a) $\sqrt{2} a$
(b) $2 a / \sqrt{3}$
(c)
$2 a / \sqrt{5}$
(d) $(\sqrt{3} / 2) a$
14. A line with direction cosines proportional to $2,1,2$ meets each of the lines $x=y+a=z$ and $x+a=2 y=2 z$. The co-ordinates of each of the points of intersection are given by
[AIEEE 2004]
(a) $(2 a, a, 3 a),(2 a, a, a)$
(b) $(3 a, 2 a, 3 a),(a, a, a)$
(c) $(3 a, 2 a, 3 a),(a, a, 2 a)$
(d) $\quad(3 a, 3 a, 3 a),(a, a, a)$
15. The equation of the planes passing through the line of intersection of the planes $3 x-y-4 z=0$ and $x+3 y+6=0$ whose distance from the origin is 1 , are
(a) $x-2 y-2 z-3=0,2 x+y-2 z+3=0$
(b) $\quad x-2 y+2 z-3=0,2 x+y+2 z+3=0$
(c) $x+2 y-2 z-3=0,2 x-y-2 z+3=0$
(d) None of these
16. The co-ordinates of the points A and B are $(2,3,4)(-2,5,-4)$ respectively. If a point P moves so that $P A^{2}-P B^{2}=k$ where k is a constant, then the locus of P is
(a) A line
(b) A plane
(c) A sphere (d)
None of these
17. The equation of the plane passing through the points ($1,-3,-2$) and perpendicular to planes $x+2 y+2 z=5$ and
$3 x+3 y+2 z=8$, is
[AISSE 1987]
(a) $2 x-4 y+3 z-8=0$
(b) $2 x-4 y-3 z+8=0$
(c)
$2 x+4 y+3 z+8=0$
(d) None of these
18. A variable plane at a constant distance p from origin meets the co-ordinates axes in A, B, C. Through these points planes are drawn parallel to co-ordinate planes. Then locus of the point of intersection is
(a) $\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}=\frac{1}{p^{2}}$
(b) $x^{2}+y^{2}+z^{2}=p^{2}$
(c) $x+y+z=p$
(d) $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=p$
19. P is a fixed point (a, a, a) on a line through the origin equally inclined to the axes, then any plane through P perpendicular to $O P$, makes intercepts on the axes, the sum of whose reciprocals is equal to
(a) a
(b) $\frac{3}{2 a}$
(c) $\quad \frac{3 a}{2}$
(d) None of these
20. The equation of the plane through the intersection of the planes $x+2 y+3 z-4=0,4 x+3 y+2 z+1=0$ and passing through the origin will be
[MP PET 1998]
(a) $x+y+z=0$
(b) $17 x+14 y+11 z=0$
(c) $7 x+4 y+z=0$
(d) $17 x+14 y+z=0$
21. The d.r's of normal to the plane through $(1,0,0),(0,1,0)$ which makes an angle $\frac{\pi}{4}$ with plane $x+y=3$, are [AIEEE 2002]
(a) $1, \sqrt{2}, 1$
(b) $1,1, \sqrt{2}$
(c)
1, 1, 2
(d) $\sqrt{2}, 1,1$
22. Two systems of rectangular axes have the same origin. If a plane cuts them at distance a, b, c and $a^{\prime}, b^{\prime}, c^{\prime}$ from the origin, then
(a) $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{a^{\prime 2}}+\frac{1}{b^{\prime 2}}+\frac{1}{c^{\prime 2}}=0$
(b) $\quad \frac{1}{a^{2}}+\frac{1}{b^{2}}-\frac{1}{c^{2}}+\frac{1}{a^{\prime 2}}+\frac{1}{b^{\prime 2}}-\frac{1}{c^{\prime 2}}=0$
(c) $\frac{1}{a^{2}}-\frac{1}{b^{2}}-\frac{1}{c^{2}}+\frac{1}{a^{\prime 2}}-\frac{1}{b^{\prime 2}}-\frac{1}{c^{\prime 2}}=0$
(d) $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}-\frac{1}{a^{\prime 2}}-\frac{1}{b^{\prime 2}}-\frac{1}{c^{\prime 2}}=0$ [AIEEE 2003]
23. If $4 x+4 y-k z=0$ is the equation of the plane through the origin that contains the line $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z}{4}$, then $k=$
(a) 1
(b) 3
(c) 5
(d) 7 [MP PET 1992]
24. The distance of the point $(1,-2,3)$ from the plane $x-y+z=5$ measured parallel to the line $\frac{x}{2}=\frac{y}{3}=\frac{z}{-6}$, is
(a) 1
(b) $6 / 7$
(c) $7 / 6$
(d)
None of these [AI CBSE 1984]
25. The distance of the point of intersection of the line $\frac{x-3}{1}=\frac{y-4}{2}=\frac{z-5}{2}$ and the plane $x+y+z=17$ from the point (3,4,5) is given by
(a) 3
(b) $3 / 2$
(c) $\sqrt{3}$
(d) None of these
26. The lines $\frac{x-a+d}{\alpha-\delta}=\frac{y-a}{\alpha}=\frac{z-a-d}{\alpha+\delta}$ and $\frac{x-b+c}{\beta-\gamma}=\frac{y-b}{\beta}=\frac{z-b-c}{\beta+\gamma}$ are coplanar and then equation to the plane in which they lie, is
(a) $x+y+z=0$
(b) $x-y+z=0$
(c) $\quad x-2 y+z=0$
(d) $x+y-2 z=0$
27. The line $\frac{x-3}{2}=\frac{y-4}{3}=\frac{z-5}{4}$ lies in the plane $4 x+4 y-k z-d=0$. The values of k and d are
(a) 4,8
(b) $-5,-3$
(c)
5,3
(d)
$-4,-8$
28. The value of k such that $\frac{x-4}{1}=\frac{y-2}{1}=\frac{z-k}{2}$ lies in the plane $2 x-4 y+z=7$, is
[IIT Screening 2003]
(a) 7
(b) -7
(c) No real value
(d) 4

The shortest distance from the plane $12 x+4 y+3 z=327$ to the sphere $x^{2}+y^{2}+z^{2}+4 x-2 y-6 z=155$ is
[AIEEE 2003]
(a) 26
(b) $11 \frac{4}{13}$
(c) 13
(d)
39
29. The radius of the circle in which the sphere $x^{2}+y^{2}+z^{2}+2 x-2 y-4 z-19=0$ is cut by the plane $x+2 y+2 z+7=0$ is
(a) 1
(b) 2
(c) 3
(d) 4 [AIEEE 2003]
30. The equation of motion of a rocket are: $x=2 t, y=-4 t, \quad z=4 t$ where the time ' t ' is given in seconds, and the co-ordinates of a moving point in kilometers. What is the path of the rocket? At what distance will be the rocket be from the starting point $0(0,0,0)$ in 10 seconds
(a) Straight line, 60 km
(b) Straight line, 30 km
(c)
Parabola, 60 km
(d) Ellipse, 60 km
31. The plane $l x+m y=0$ is rotated an angle α about its line of intersection with the plane $z=0$, then the equation to the plane in its new position is
(a) $l x+m y \pm z \sqrt{\left(l^{2}+m^{2}\right)} \tan \alpha=0$
(b) $l x-m y \pm z \sqrt{\left(l^{2}+m^{2}\right)} \tan \alpha=0$
(c) $l x+m y \pm z \sqrt{\left(l^{2}+m^{2}\right)} \cos \alpha=0$
(d) $l x-m y \pm z \sqrt{\left(l^{2}+m^{2}\right)} \cos \alpha=0$
32. The distance between two points P and Q is d and the length of their projections of $P Q$ on the co-ordinate planes are d_{1}, d_{2}, d_{3}. Then $d_{1}^{2}+d_{2}^{2}+d_{3}^{2}=k d^{2}$ where ' k ' is
(a) 1
(b) 5
(c) 3
(d) 2
33. If P_{1} and P_{2} are the lengths of the perpendiculars from the points $(2,3,4)$ and $(1,1,4)$ respectively from the plane $3 x-6 y+2 z+11=0$, then P_{1} and P_{2} are the roots of the equation
(a) $P^{2}-23 P+7=0$
(b) $7 P^{2}-23 P+16=0$
(c) $P^{2}-17 P+16=0$
(d) $P^{2}-16 P+7=0$
34. The edge of a cube is of length ' a ' then the shortest distance between the diagonal of a cube and an edge skew to it is
(a) $a \sqrt{2}$
(b) a
(c) $\sqrt{2} / a$
(d) $a / \sqrt{2}$

Que from Compt. Exams

Co-ordinate Geometry of Three Dimensions

$\mathbf{1}$	d	2	c	3	a	4	c	5	b
6	b	7	a	8	a	9	a	10	d
11	b	12	b	13	b	14	b	15	a
16	b	17	a	18	a	19	d	20	b
21	b	22	d	23	c	24	a	25	a
26	c	27	c	28	a	29	c	30	c
31	a	32	a	33	d	34	b	35	d

Que from Compt. Exams

Vector Algebra

1. Three forces of magnitudes $1,2,3$ dynes meet in a point and act along diagonals of three adjacent faces of a cube. The resultant force is
[MNR 1987]
(a) 114 dyne
(b) 6 dyne
(c)
5 dyne
(d)
None of these
2. The vectors \mathbf{b} and \mathbf{c} are in the direction of north-east and north-west respectively and $|\mathbf{b}|=|\mathbf{c}|=4$. The magnitude and direction of the vector $\mathbf{d}=\mathbf{c}-\mathbf{b}$, are [Roorkee 200o]
(a) $4 \sqrt{2}$, towards north
(b) $4 \sqrt{2}$, towards west
(c)
4, towards east
(d)
4, towards south
3. If \mathbf{a}, \mathbf{b} and \mathbf{c} are unit vectors, then $|\mathbf{a}-\mathbf{b}|^{2}+|\mathbf{b}-\mathbf{c}|^{2}+|\mathbf{c}-\mathbf{a}|^{2}$ does not exceed[IIT Screening 2001]
(a) 4
(b) 9
(c)
(d) 6
4. The vectors $\overrightarrow{A B}=3 \mathbf{i}+5 \mathbf{j}+4 \mathbf{k}$ and $\overrightarrow{A C}=5 \mathbf{i}-5 \mathbf{j}+2 \mathbf{k}$ are the sides of a triangle $A B C$. The length of the median through A is
[UPSEAT 2004]
(a) $\sqrt{13}$ unit
(b) $2 \sqrt{5}$ unit
(c) 5 unit
(d) 10 unit
5. Let the value of $\mathbf{p}=(x+4 y) \mathbf{a}+(2 x+y+1) \mathbf{b}$ and $\mathbf{q}=(y-2 x+2) \mathbf{a}+(2 x-3 y-1) \mathbf{b}$, where \mathbf{a} and \mathbf{b} are non-collinear vectors. If $3 \mathbf{p}=2 \mathbf{q}$, then the value of x and y will be
[RPET 1984; MNR 1984]
(a) $-1,2$
(b) 2, - 1
(c)
1, 2
(d) $2,1 \backslash$
6. The points D, E, F divide $B C, C A$ and $A B$ of the triangle $A B C$ in the ratio $1: 4,3: 2$ and $3: 7$ respectively and the point K divides $A B$ in the ratio $1: 3$, then $(\overrightarrow{A D}+\overrightarrow{B E}+\overrightarrow{C F}): \overrightarrow{C K}$ is equal to

[MNR 1987]

(a) $1: 1$
(b) $2: 5$
(c)
5:2
(d)
None of these
7. If two vertices of a triangle are $\mathbf{i}-\mathbf{j}$ and $\mathbf{j}+\mathbf{k}$, then the third vertex can be
[Roorkee 1995]
(a) $\mathbf{i}+\mathbf{k}$
(b) $\mathbf{i}-2 \mathbf{j}-\mathbf{k}$
(c)
$\mathbf{i}-\mathbf{k}$
(d) $\quad 2 \mathbf{i}-\mathbf{j}$
(e) All the above
8. If \mathbf{a} of magnitude 50 is collinear with the vector $\mathbf{b}=6 \mathbf{i}-8 \mathbf{j}-\frac{15 \mathbf{k}}{2}$, and makes an acute angle with the positive direction of z-axis, then the vector \mathbf{a} is equal to
[Pb. CET 2004]
(a) $24 \mathbf{i}-32 \mathbf{j}+30 \mathbf{k}$
(b) $-24 \mathbf{i}+32 \mathbf{j}+30 \mathbf{k}$
(c) $16 \mathbf{i}-16 \mathbf{j}-15 \mathbf{k}$
(d) $-12 \mathbf{i}+16 \mathbf{j}-30 \mathbf{k}$
9. If three non-zero vectors are $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}, \quad \mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}$ and $\mathbf{c}=c_{1} \mathbf{i}+c_{2} \mathbf{j}+c_{3} \mathbf{k}$. If \mathbf{c} is the unit vector perpendicular to the vectors \mathbf{a} and \mathbf{b} and the angle between \mathbf{a} and \mathbf{b} is $\frac{\pi}{6}$, then $\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|^{2}$ is equal to
(a) 0
(b) $\frac{3\left(\Sigma a_{1}^{2}\right)\left(\Sigma b_{1}^{2}\right)\left(\Sigma c_{1}^{2}\right)}{4}$
(c) $\quad 1$
(d) $\frac{\left(\Sigma a_{1}^{2}\right)\left(\Sigma b_{1}^{2}\right)}{4}$
10. Let the unit vectors \mathbf{a} and \mathbf{b} be perpendicular and the unit vector \mathbf{c} be inclined at an angle θ to both \mathbf{a} and \mathbf{b}. If $\mathbf{c}=\alpha \mathbf{a}+\beta \mathbf{b}+\gamma(\mathbf{a} \times \mathbf{b})$, then
[Orissa JEE 2003]
(a) $\alpha=\beta=\cos \theta, \gamma^{2}=\cos 2 \theta$
(b) $\alpha=\beta=\cos \theta, \gamma^{2}=-\cos 2 \theta$
(c) $\alpha=\cos \theta, \beta=\sin \theta, \gamma^{2}=\cos 2 \theta$
(d) None of these
11. The vector $\mathbf{a}+\mathbf{b}$ bisects the angle between the vectors \mathbf{a} and \mathbf{b}, if
(a) $|\mathbf{a}|=|\mathbf{b}|$
(b) $|\mathbf{a}|=|\mathbf{b}|$ or angle between \mathbf{a} and \mathbf{b} is zero
(c) $|\mathbf{a}|=m|\mathbf{b}|$
(d) None of these
12. The points O, A, B, C, D are such that $\overrightarrow{O A}=\mathbf{a}, \overrightarrow{O B}=\mathbf{b}, \quad \overrightarrow{O C}=2 \mathbf{a}+3 \mathbf{b}$ and $\overrightarrow{O D}=\mathbf{a}-2 \mathbf{b}$. If $|\mathbf{a}|=3|\mathbf{b}|$, then the angle between $\overrightarrow{B D}$ and $\overrightarrow{A C}$ is
(a) $\frac{\pi}{3}$
(b) $\frac{\pi}{4}$
(c) $\frac{\pi}{6}$
(d) None of these
13. If $\vec{A}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}, \vec{B}=-\mathbf{i}+2 \mathbf{j}+\mathbf{k}$ and $\vec{C}=3 \mathbf{i}+\mathbf{j}$, then the value of t such that $\vec{A}+t \vec{B}$ is at right angle to vector \vec{C}, is
[RPET 2002]
(a) 2
(b) 4
(c) 5
(d) 6
14. Let $\mathbf{b}=4 \mathbf{i}+3 \mathbf{j}$ and \mathbf{c} be two vectors perpendicular to each other in the $x y$-plane. All vectors in the same plane having projections 1 and 2 along \mathbf{b} and \mathbf{c} respectively, are given by [IIT 1987]
(a) $2 \mathbf{i}-\mathbf{j}, \frac{2}{5} \mathbf{i}+\frac{11}{5} \mathbf{j}$
(b) $2 \mathbf{i}+\mathbf{j},-\frac{2}{5} \mathbf{i}+\frac{11}{5} \mathbf{j}$
(c) $\quad 2 \mathbf{i}+\mathbf{j},-\frac{2}{5} \mathbf{i}-\frac{11}{5} \mathbf{j}$
(d) $\quad 2 \mathbf{i}-\mathbf{j},-\frac{2}{5} \mathbf{i}+\frac{11}{5} \mathbf{j}$
15. Let $\mathbf{a}=2 \mathbf{i}-\mathbf{j}+\mathbf{k}, \mathbf{b}=\mathbf{i}+2 \mathbf{j}-\mathbf{k}$ and $\mathbf{c}=\mathbf{i}+\mathbf{j}-2 \mathbf{k}$ be three vectors. A vector in the plane of \mathbf{b} and \mathbf{c} whose projection on \mathbf{a} is of magnitude $\sqrt{2 / 3}$ is
[IIT 1993; Pb. CET 2004]
(a) $2 \mathbf{i}+3 \mathbf{j}-3 \mathbf{k}$
(b) $2 \mathbf{i}+3 \mathbf{j}+3 \mathbf{k}$
(c) $\quad-2 \mathbf{i}-\mathbf{j}+5 \mathbf{k}$
(d) $2 \mathbf{i}+\mathbf{j}+5 \mathbf{k}$
16. A vector a has components $2 p$ and 1 with respect to a rectangular cartesian system. The system is rotated through a certain angle about the origin in the anti-clockwise sense. If \mathbf{a} has components $p+1$ and 1 with respect to the new system, then
[IIT 1984]
(a) $p=0$
(b) $p=1$ or $-\frac{1}{3}$
(c) $\quad p=-1$ or $\frac{1}{3}$
(d) $\quad p=1$ or -1
17. If $\mathbf{u}=2 \mathbf{i}+2 \mathbf{j}-\mathbf{k}$ and $\mathbf{v}=6 \mathbf{i}-3 \mathbf{j}+2 \mathbf{k}$, then a unit vector perpendicular to both \mathbf{u} and \mathbf{v} is
[MP PET 1987]
(a) $\mathbf{i}-10 \mathbf{j}-18 \mathbf{k}$
(b) $\frac{1}{\sqrt{17}}\left(\frac{1}{5} \mathbf{i}-2 \mathbf{j}-\frac{18}{5} \mathbf{k}\right)$ (c)
$\frac{1}{\sqrt{473}}(7 \mathbf{i}-10 \mathbf{j}-18 \mathbf{k})$
(d) None of these
18. If $\mathbf{a}=2 \mathbf{i}+\mathbf{k}, \mathbf{b}=\mathbf{i}+\mathbf{j}+\mathbf{k}$ and $\mathbf{c}=4 \mathbf{i}-3 \mathbf{j}+7 \mathbf{k}$. If $\mathbf{d} \times \mathbf{b}=\mathbf{c} \times \mathbf{b}$ and $\mathbf{d} . \mathbf{a}=0$, then \mathbf{d} will be [IIT 1990]
(a) $\mathbf{i}+8 \mathbf{j}+2 \mathbf{k}$
(b) $\mathbf{i}-8 \mathbf{j}+2 \mathbf{k}$
(c) $\quad-\mathbf{i}+8 \mathbf{j}-\mathbf{k}$
(d) $\quad-\mathbf{i}-8 \mathbf{j}+2 \mathbf{k}$
19. If $\mathbf{a} \times \mathbf{r}=\mathbf{b}+\lambda \mathbf{a}$ and $\mathbf{a} \cdot \mathbf{r}=3$, where $\mathbf{a}=2 \mathbf{i}+\mathbf{j}-\mathbf{k}$ and $\mathbf{b}=-\mathbf{i}-2 \mathbf{j}+\mathbf{k}$, then \mathbf{r} and λ are equal to
(a) $\mathbf{r}=\frac{7}{6} \mathbf{i}+\frac{2}{3} \mathbf{j}, \lambda=\frac{6}{5}$
(b) $\mathbf{r}=\frac{7}{6} \mathbf{i}+\frac{2}{3} \mathbf{j}, \lambda=\frac{5}{6}$
(c) $\quad \mathbf{r}=\frac{6}{7} \mathbf{i}+\frac{2}{3} \mathbf{j}, \lambda=\frac{6}{5}$
(d) None of these

DOWNLOAD FREE FROM www.tekoclasses.com , PH.: 0903903 7779, 09893058881
 MATHS H.O.D.: SUHAG R.KARIYA, BHOPAL, VECTORS \& 3D PART 6 OF 6

20. Let the vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and \mathbf{d} be such that $(\mathbf{a} \times \mathbf{b}) \times(\mathbf{c} \times \mathbf{d})=0$. Let P_{1} and P_{2} be planes determined by pair of vectors \mathbf{a}, \mathbf{b} and \mathbf{c}, \mathbf{d} respectively. Then the angle between P_{1} and P_{2} is [IIT Screening 20oo; MP PET 2004]
(a) 0°
(b) $\frac{\pi}{4}$
(c) $\frac{\pi}{3}$
(d) $\frac{\pi}{2}$
21. If $\mathbf{a}=\mathbf{i}+\mathbf{j}+\mathbf{k}, \mathbf{a} \cdot \mathbf{b}=1$ and $\mathbf{a} \times \mathbf{b}=\mathbf{j}-\mathbf{k}$, then $\mathbf{b}=$
[IIT Screening 2004]
(a) \mathbf{i}
(b) $\mathbf{i}-\mathbf{j}+\mathbf{k}$
(c) $2 \mathbf{j}-\mathbf{k}$
(d) $\quad 2 \mathbf{i}$
22. The position vectors of the vertices of a quadrilateral $A B C D$ are $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and \mathbf{d} respectively. Area of the quadrilateral formed by joining the middle points of its sides is

[Roorkee 200o]

(a) $\left.\frac{1}{4} \mathbf{a} \times \mathbf{b}+\mathbf{b} \times \mathbf{d}+\mathbf{d} \times \mathbf{a} \right\rvert\,$
(b) $\quad \frac{1}{4}|\mathbf{b} \times \mathbf{c}+\mathbf{c} \times \mathbf{d}+\mathbf{a} \times \mathbf{d}+\mathbf{b} \times \mathbf{a}|$
(c) $\frac{1}{4}|\mathbf{a} \times \mathbf{b}+\mathbf{b} \times \mathbf{c}+\mathbf{c} \times \mathbf{d}+\mathbf{d} \times \mathbf{a}|$
(d) $\quad \frac{1}{4}|\mathbf{b} \times \mathbf{c}+\mathbf{c} \times \mathbf{d}+\mathbf{d} \times \mathbf{b}|$
23. The moment about the point $M(-2,4,-6)$ of the force represented in magnitude and position by $\overrightarrow{A B}$ where the points A and B have the co-ordinates $(1,2,-3)$ and $(3,-4,2)$ respectively, is
[MP PET 2OOO]
(a) $8 \mathbf{i}-9 \mathbf{j}-14 \mathbf{k}$
(b) $2 \mathbf{i}-6 \mathbf{j}+5 \mathbf{k}$
(c) $\quad-3 \mathbf{i}+2 \mathbf{j}-3 \mathbf{k}$
(d) $-5 \mathbf{i}+8 \mathbf{j}-8 \mathbf{k}$
24. If the vectors $a \mathbf{i}+\mathbf{j}+\mathbf{k}, \mathbf{i}+b \mathbf{j}+\mathbf{k}$ and $\mathbf{i}+\mathbf{j}+c \mathbf{k}(a \neq b \neq c \neq 1)$ are coplanar, then the value of $\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}=$ [BIT Ranchi 1988; RPET 1987;IIT 1987; DCE 2001; MP PET 2004; ORISSA JEE 2005]
(a) -1
(b) $-\frac{1}{2}$
(c) $\frac{1}{2}$
(d) $\quad 1$
25. If $\alpha(\mathbf{a} \times \mathbf{b})+\beta(\mathbf{b} \times \mathbf{c})+\gamma(\mathbf{c} \times \mathbf{a})=\mathbf{0}$ and at least one of the numbers α, β and γ is non-zero, then the vectors \mathbf{a}, \mathbf{b} and c are
(a) Perpendicular
(b) Parallel
(c) Coplanar
(d) None of these
26. The volume of the tetrahedron, whose vertices are given by the vectors $-\mathbf{i}+\mathbf{j}+\mathbf{k}, \mathbf{i}-\mathbf{j}+\mathbf{k}$ and $\mathbf{i}+\mathbf{j}-\mathbf{k}$ with reference to the fourth vertex as origin, is
(a) $\frac{5}{3}$ cubic unit
(b) $\frac{2}{3}$ cubic unit
(c) $\frac{3}{5}$ cubic unit
(d) None of these
27. Let $\mathbf{a}=\mathbf{i}-\mathbf{j}, \mathbf{b}=\mathbf{j}-\mathbf{k}, \mathbf{c}=\mathbf{k}-\mathbf{i}$. If $\hat{\mathbf{d}}$ is a unit vector such that $\mathbf{a} \cdot \hat{\mathbf{d}}=0=[\mathbf{b} \mathbf{c} \hat{\mathbf{d}}]$, then $\hat{\mathbf{d}}$ is equal to [IIT 1995]
(a) $\pm \frac{\mathbf{i}+\mathbf{j}-\mathbf{k}}{\sqrt{3}}$
(b) $\pm \frac{\mathbf{i}+\mathbf{j}+\mathbf{k}}{\sqrt{3}}$
(c) $\pm \frac{\mathbf{i}+\mathbf{j}-2 \mathbf{k}}{\sqrt{6}}$
(d) $\pm \mathbf{k}$
28. The value of ' a ' so that the volume of parallelopiped formed by $\mathbf{i}+a \mathbf{j}+\mathbf{k}, \mathbf{j}+a \mathbf{k}$ and $a \mathbf{i}+\mathbf{k}$ becomes minimum is
[IIT Screening 2003]
(a) -3
(b) 3
(c) $\frac{1}{\sqrt{3}}$
(d) $\sqrt{3}$
29. If \mathbf{b} and \mathbf{c} are any two non-collinear unit vectors and \mathbf{a} is any vector, then $(\mathbf{a} \cdot \mathbf{b}) \mathbf{b}+(\mathbf{a} \cdot \mathbf{c}) \mathbf{c}+\frac{\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})}{|\mathbf{b} \times \mathbf{c}|}(\mathbf{b} \times \mathbf{c})=$
[IIT 1996]
(a) \mathbf{a}
(b) \mathbf{b}
(c) \mathbf{c}
(d) \mathbf{o}
30. If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are non-coplanar unit vectors such that $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=\frac{\mathbf{b}+\mathbf{c}}{\sqrt{2}}$, then the angle between \mathbf{a} and \mathbf{b} is [IIT 1995]
(a) $\frac{\pi}{4}$
(b) $\frac{\pi}{2}$
(c) $\frac{3 \pi}{4}$
(d) π
31. $[(\mathbf{a} \times \mathbf{b}) \times(\mathbf{b} \times \mathbf{c})(\mathbf{b} \times \mathbf{c}) \times(\mathbf{c} \times \mathbf{a})(\mathbf{c} \times \mathbf{a}) \times(\mathbf{a} \times \mathbf{b})]=$
(a) $[\mathbf{a} \mathbf{b} \mathbf{c}]^{2}$
(b) $[\mathbf{a} \mathbf{b} \mathbf{c}]^{3}$
(c) $\quad\left[\begin{array}{lll}\mathbf{a} & \mathbf{b} & \mathbf{c}\end{array}\right]^{4}$
(d) None of these
32. Unit vectors \mathbf{a}, \mathbf{b} and \mathbf{c} are coplanar. A unit vector \mathbf{d} is perpendicular to them. If $(\mathbf{a} \times \mathbf{b}) \times(\mathbf{c} \times \mathbf{d})=\frac{1}{6} \mathbf{i}-\frac{1}{3} \mathbf{j}+\frac{1}{3} \mathbf{k}$ and the angle between \mathbf{a} and \mathbf{b} is 30°, then \mathbf{c} is

[Roorkee Qualifying 1998]

(a) $\frac{(\mathbf{i}-2 \mathbf{j}+2 \mathbf{k})}{3}$
(b) $\frac{(2 \mathbf{i}+\mathbf{j}-\mathbf{k})}{3}$
(c) $\frac{(-\mathbf{i}+2 \mathbf{j}-2 \mathbf{k})}{3}$
(d) $\frac{(-\mathbf{i}+2 \mathbf{j}+\mathbf{k})}{3}$
33. The radius of the circular section of the sphere $|\mathbf{r}|=5$ by the plane $\mathbf{r} .(\mathbf{i}+\mathbf{j}+\mathbf{k})=3 \sqrt{3}$ is
[DCE 1999]
(a) 1
(b) 2
(c) 3
(d) 4
34. If \mathbf{x} is parallel to \mathbf{y} and \mathbf{z} where $\mathbf{x}=2 \mathbf{i}+\mathbf{j}+\alpha \mathbf{k}, \mathbf{y}=\alpha \mathbf{i}+\mathbf{k}$ and $\mathbf{z}=5 \mathbf{i}-\mathbf{j}$, then α is equal to
[J \& K 2005]
(a) $\pm \sqrt{5}$
(b) $\pm \sqrt{6}$
(c) $\pm \sqrt{7}$
(d) None of these
35. The vector \mathbf{c} directed along the internal bisector of the angle between the vectors $\mathbf{a}=7 \mathbf{i}-4 \mathbf{j}-4 \mathbf{k}$ and $\mathbf{b}=-2 \mathbf{i}-\mathbf{j}+2 \mathbf{k}$ with $|\mathbf{c}|=5 \sqrt{6}$, is
(a) $\frac{5}{3}(\mathbf{i}-7 \mathbf{j}+2 \mathbf{k})$
(b) $\frac{5}{3}(5 \mathbf{i}+5 \mathbf{j}+2 \mathbf{k})$
(c) $\quad \frac{5}{3}(\mathbf{i}+7 \mathbf{j}+2 \mathbf{k})$
(d) $\frac{5}{3}(-5 \mathbf{i}+5 \mathbf{j}+2 \mathbf{k})$
36. The distance of the point $B(\mathbf{i}+2 \mathbf{j}+3 \mathbf{k})$ from the line which is passing through $A(4 \mathbf{i}+2 \mathbf{j}+2 \mathbf{k})$ and which is parallel to the vector $\vec{C}=2 \mathbf{i}+3 \mathbf{j}+6 \mathbf{k}$ is
[Roorkee 1993]
(a) 10
(b) $\sqrt{10}$
(c) 100
(d)
None of these
37. Let $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are three non-coplanar vectors such that $\mathbf{r}_{1}=\mathbf{a}-\mathbf{b}+\mathbf{c}, \mathbf{r}_{2}=\mathbf{b}+\mathbf{c}-\mathbf{a}, \mathbf{r}_{3}=\mathbf{c}+\mathbf{a}+\mathbf{b}$, $\mathbf{r}=2 \mathbf{a}-3 \mathbf{b}+4 \mathbf{c}$. If $\mathbf{r}=\lambda_{1} \mathbf{r}_{1}+\lambda_{2} \mathbf{r}_{2}+\lambda_{3} \mathbf{r}_{3}$, then
(a) $\lambda_{1}=7$
(b) $\lambda_{1}+\lambda_{3}=3$
(c)
$\lambda_{1}+\lambda_{2}+\lambda_{3}=4$
(d) $\lambda_{3}+\lambda_{2}=2$
38. Let $\mathbf{a}=2 \mathbf{i}+\mathbf{j}+\mathbf{k}, \mathbf{b}=\mathbf{i}+2 \mathbf{j}-\mathbf{k}$ and a unit vector \mathbf{c} be coplanar. If \mathbf{c} is perpendicular to \mathbf{a}, then $\mathbf{c}=$
[IIT 1999; Pb. CET 2003; DCE 2005]
(a) $\frac{1}{\sqrt{2}}(-\mathbf{j}+\mathbf{k})$
(b) $\frac{1}{\sqrt{3}}(-\mathbf{i}-\mathbf{j}-\mathbf{k})$
(c) $\quad \frac{1}{\sqrt{5}}(\mathbf{i}-2 \mathbf{j})$
(d) $\frac{1}{\sqrt{3}}(\mathbf{i}-\mathbf{j}-\mathbf{k})$
39. Let $\mathbf{p}, \mathbf{q}, \mathbf{r}$ be three mutually perpendicular vectors of the same magnitude. If a vector \mathbf{x} satisfies equation $\mathbf{p} \times\{(\mathbf{x}-\mathbf{q}) \times \mathbf{p}\}+\mathbf{q} \times\{(\mathbf{x}-\mathbf{r}) \times \mathbf{q}\}+\mathbf{r} \times\{(\mathbf{x}-\mathbf{p}) \times \mathbf{r}\}=0$, then \mathbf{x} is given by
[IIT 1997 Cancelled]
(a) $\frac{1}{2}(\mathbf{p}+\mathbf{q}-2 \mathbf{r})$
(b) $\frac{1}{2}(\mathbf{p}+\mathbf{q}+\mathbf{r})$
(c) $\quad \frac{1}{3}(\mathbf{p}+\mathbf{q}+\mathbf{r})$
(d) $\frac{1}{3}(2 \mathbf{p}+\mathbf{q}-\mathbf{r})$
40. The point of intersection of $\mathbf{r} \times \mathbf{a}=\mathbf{b} \times \mathbf{a}$ and $\mathbf{r} \times \mathbf{b}=\mathbf{a} \times \mathbf{b}$, where $\mathbf{a}=\mathbf{i}+\mathbf{j}$ and $\mathbf{b}=2 \mathbf{i}-\mathbf{k}$ is [Orissa JEE 2004]
(a) $3 \mathbf{i}+\mathbf{j}-\mathbf{k}$
(b) $3 \mathbf{i}-\mathbf{k}$
(c)
$3 \mathbf{i}+2 \mathbf{j}+\mathbf{k}$
(d) None of these

Que from Compt. Exams

Vector Algebra

1	c	2	b	3	b	4	c	5	b
6	b	7	e	8	b	9	d	10	b
11	b	12	d	13	c	14	d	15	a,c
16	b	17	b	18	d	19	b	20	a
21	a	22	c	23	a	24	d	25	c
26	b	27	c	28	c	29	a	30	c
31	c	32	a,c	33	d	34	c	35	a
36	b	37	b,c	38	a	39	b	40	a

for 39 Yrs. Que. of IIT-JEE \&
 15 Yrs. Que. of AIEEE
 we have distributed already a book

