Assertion- Reason

Some questions (Assertion–Reason type) are given below. Each question contains **Statement – 1** (Assertion) and **Statement – 2** (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which **ONLY ONE** is correct. So select the correct choice :*Choices are* :

(A)Statement – 1 is True, Statement – 2 is True; Statement – 2 is a correct explanation for Statement – 1.

- (B)Statement 1 is True, Statement 2 is True; Statement 2 is NOT a correct explanation for Statement 1.
- (C) **Statement 1** is True, **Statement 2** is False.
- (D) Statement -1 is False, Statement -2 is True.
- **452.** Let $\overline{a}, \overline{b}, \overline{c}$ be three non-coplanar vectors then $(\overline{b} \overline{c}).[(\overline{c} \overline{a}) \times (\overline{a} \overline{b})] = 0$

Statement 1: $\overline{b} - \overline{c}$ can be expressed as linear combination of $\overline{c} - \overline{a}$ and $\overline{a} - \overline{b}$.

- Statement 2: Given non-coplanar vectors one vector can be expressed as a linear combination of other two.
 453. A vector has components p and 1 with respect to a rectangular cartesian system. If the axes are rotated through an angle α about the origin in the anticlockwise sense.
 Statement-1: If the vector has component p + 2 and 1 with respect to the new system then p = -1
 Statement-2: Magnitude of vector original and new system remains same
- 454. Let $|\vec{a}|=4$, $|\vec{b}|=2$ and angle between \vec{a} and \vec{b} is $\pi/6$ Statement-1: $(\vec{a}\times\vec{b})^2 = 4$ Statement-2: $(\vec{a}\times\vec{b})^2 = |\vec{a}|^2$
- **455.** Statement-1 : $\begin{bmatrix} \vec{b} \times \vec{c} & \vec{c} \times \vec{a} & \vec{a} \times \vec{b} \end{bmatrix} = 0$

Statement-2 : If \vec{a} , \vec{b} , \vec{r} are linearly dependent vectors then they are coplanar.

456. Statement-1 : If $|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$ then \vec{a} is parallel to \vec{b} . Statement-2 : If $|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$ then $\vec{a}.\vec{b} = 0$.

457. Let \vec{r} be a non-zero vector satisfying $\vec{r} \cdot \vec{a} = \vec{r} \cdot \vec{b} = \vec{r} \cdot \vec{c} = 0$ for given non-zero vectors $\vec{a} \cdot \vec{b}$ and $\vec{c} \cdot \vec{c}$.

Statement-1 : \vec{a}, \vec{b} and \vec{c} are coplanar vectors.

Statement-2 : \vec{r} is perpendicular to the vectors \vec{a}, \vec{b} and \vec{c} .

- **458.** Let \vec{a} and \vec{r} be two non-collinear vectors. **Statement-1** : vector $\vec{a} \times (\vec{a} \times \vec{r})$ is a vector in the plane of \vec{a} and \vec{r} , perpendicular to \vec{a} . **Statement-2** : $\vec{a} \times (\vec{a} \times \vec{b}) = \vec{0}$, for any vector \vec{b} .
- **459.** Statement-1 : If three points P, Q, R have position vectors \vec{a} , \vec{b} , \vec{c} respectively and $2\vec{a}+3\vec{b}-5\vec{c}=0$, then the points P, Q, R must be collinear. Statement-2 : If for three points A, B, C; $\overrightarrow{AB} = \lambda \overrightarrow{AC}$, then the points A, B, C must be collinear.
- **460.** Statement-1 : Let \vec{a} and \vec{b} be two non collinear unit vectors. If $\vec{u} = \vec{a} (\vec{a}.\vec{b})\vec{b}$ and $\vec{v} = \vec{a} \times \vec{b}$ then $|\vec{v}| = |\vec{u}|$.

Statement-2: The vector $\frac{1}{3}(2\hat{i}-2\hat{j}+\hat{k})$ is makes an angle of $\frac{\pi}{3}$ with the vector $(5\hat{i}-4\hat{j}+3\hat{k})$.

461. Statement-1: If $\vec{u} & \vec{v}$ are unit vectors inclined at an angle α and \vec{x} is a unit vector bisecting the angle between them, then $\vec{x} = \frac{\vec{u} + \vec{v}}{2\cos\frac{\alpha}{2}}$

Statement-2: If $\triangle ABC$ is an isosceles triangle with AB = AC = 1, then vector representing bisector of angle A is given by $\overrightarrow{AD} = \frac{\overrightarrow{AB} + \overrightarrow{AC}}{2}$

462. Statement-1: The direction ratios of line joining origin and point (x, y, z) must be x, y, z.

Statement-2: If P is a point (x, y, z) in space and OP = r, then direction cosines of OP are $\frac{x}{r}, \frac{y}{r}, \frac{z}{r}$.

- 463. Statement-1: If the vectors $2\hat{i} \hat{j} + \hat{k}$, $\hat{i} + 2\hat{j} 3\hat{k}$ and $3\hat{i} \lambda\hat{j} + 5\hat{k}$ are coplanar, then $|\lambda|^2$ is equal to 16. Statement-2: The vectors \vec{a}, \vec{b} and \vec{c} are coplanar iff $\vec{a}, (\vec{b} \times \vec{c}) = 0$
- 464. Statement-2: Direction co-sines of L be $< \frac{3}{5\sqrt{2}}, -\frac{4}{5\sqrt{2}}, \frac{1}{\sqrt{2}} >$
- 465. Statement-1: The points with position vectors $\vec{a} 2\vec{b} + 3\vec{c}$, $-2\vec{a} + 3\vec{b} \vec{c}$, $4\vec{a} 7\vec{b} + 7\vec{c}$ are collinear. Statement-2: The position vectors $\vec{a} - 2\vec{b} + 3\vec{c}$, $-2\vec{a} + 3\vec{b} - \vec{c}$, $4\vec{a} - 7\vec{b} + 7\vec{c}$ are linearly dependent vectors.
- 466. Statement-1: If $\vec{a}, \vec{b}, \vec{c}$ are three unit vectors such that $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{1}{2}\vec{b}$ then the angle between $\vec{a} \ll \vec{b}$ is $\pi/2$

Statement-2: If
$$\vec{a} \times (\vec{b} \times \vec{c}) = \frac{1}{2}\vec{b}$$
, then $\vec{a} \cdot \vec{b} = 0$

- **467.** Statement-1: If $\cos\alpha$, $\cos\beta$, $\cos\gamma$ are the direction cosine of any line segment, $\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1$. Statement-2: If $\cos\alpha$, $\cos\beta$, $\cos\gamma$ are the direction cosine of line segment, $\cos^2\alpha + \cos^2\beta + \cos^2\gamma = -1$.
- **468.** Statement-1: The direction cosines of one of the angular bisector of two intersecting lines having direction cosines as l_1 , m_1 , n_1 , $\&l_2$, m_2 , n_2 is proportional to $l_1 + l_2$, $m_1 + m_2$, $n_1 + n_2$. Statement-2: The angle between the two intersecting lines having direction cosines as l_1 , m_1 , $n_1 \& l_2$, m_2 , n_2 is given by $\cos\theta = l_1 l_2 + m_1m_2 + n_1n_2$.
- **469.** Statement-1: If $\vec{a} \cdot \vec{b} = 0 \Rightarrow \vec{a} \perp \vec{b}$ Statement-2: $\vec{a} \cdot \vec{b} = 0 \Rightarrow$ either $\vec{a} = 0$ or $\vec{b} = 0$ or $\vec{a} \perp \vec{b}$
- 470. Statement-1: $\vec{A} \times \vec{B} = \vec{B} \times \vec{A}$

Statement-2: $\vec{A} \times \vec{B} = |\vec{A}| |\vec{B}| \sin\theta \hat{n}$, when θ is angle, when your fingers curls from A to B

- **471.** Statement-1 : A vector \perp^r the plane of (1, -1, 0), (2, 1, -1) & (-1, 1, 2) is $6\hat{i} + 6\hat{k}$ Statement-2 : $\vec{A} \times \vec{B}$ always gives a vector perpendicular to plane of $\vec{A} \& \vec{B}$
- 472. Statement-1 : Angle between planes $\vec{r}.\vec{n}_1 = \vec{q}_1 \& \vec{r}.\vec{n}_2 = \vec{q}_2$. (acute angle) is given by $\cos\theta = \vec{n}_1.\vec{n}_2$ Statement-2 : Angle between the planes in same as acute angle formed by their normals.
- 473. Statement-1: In $\triangle ABC$, $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = 0$ Statement-2: If $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$ then $\overrightarrow{AB} = \overrightarrow{a} + \overrightarrow{b}$
- 474. Statement-1: $\vec{a} = 3\vec{i} + p\vec{j} + 3\vec{k}$ and $\vec{b} = 2\vec{i} + 3\vec{j} + q\vec{k}$ are parallel vectors it p = 9/2 and q = 2. Statement-2: If $\vec{a} = a_1\vec{i} + a_2\vec{j} + a_3\vec{k}$ and $\vec{b} = b_1\vec{i} + b_2\vec{j} + b_3\vec{k}$ are parallel $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}$
- **475. Statement-1:** The direction ratios of line joining origin and point (x, y, z) must be x, y, z

Statement-2: If P is a point (x,y, z) in space and OP = r then directions cosines of OP are $\frac{x}{r}, \frac{y}{r}, \frac{z}{r}$

- 476. Statement-1: The shortest distance between the skew lines $\vec{r} = \vec{a} + \alpha \vec{b}$ and $\vec{r} = \vec{c} + \beta \vec{d}$ is $\frac{|[\vec{a} \vec{c} \ \vec{b} \vec{d}]|}{|\vec{b} \times \vec{d}|}$ Statement-2: Two lines are skew lines if three axist no plane passing through them.
- 477. Statement-1: $\vec{a} = \hat{i} + p\hat{j} + 2\hat{k}$, $\vec{b} = 2\hat{i} + 3\hat{j} + q\hat{k}$ are parallel vectors of p = 3/2 and q = 4. Statement-2: $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ and $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ are parallel if $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}$.

- **478.** Statement-1: If $\vec{a} = 2\hat{i} + \hat{k}$, $\vec{b} = 3\hat{j} + 4\hat{k}$ and $\vec{c} = 8\hat{i} 3\hat{j}$ are coplanar then $\vec{c} = 4\vec{a} \vec{b}$. Statement-2: A set of vectors $\vec{a}_1, \vec{a}_2...\vec{a}_n$ is said to be linearly independent if every relation of the form $l_1 \vec{a}_1 + l_2$ $\vec{a}_2 + ... + l_n \vec{a}_n = 0$ implies that $l_1 = l_2 = ... = l_n = 0$ (scalars).
- 479. Statement-1: The shortest distance between the skew lines $\vec{r} = \vec{a} + \alpha \vec{b}$ and $\vec{r} = \vec{c} + \beta \vec{d}$ is $\frac{|\vec{a} \vec{c}| \cdot (\vec{b} \times \vec{d})|}{|\vec{b} \times \vec{d}|}$
- 480. Statement-2: Two lines are skew lines if there exists no plane passing through them.
 480. Statement-1: The curve which is tangent to a sphere at a given point is the equation of a plane. Statement-2: Infinite number of lines touch the sphere at a given point.
- 481. Statement-1: In $\triangle ABC \ AB + BC + CA = O$ Statement-2: If $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = \vec{b}$, then $\overrightarrow{AB} = \vec{a} + \vec{b}$ (\triangle law of addition).
- **482.** Statement-1: $\vec{a} = \hat{i} + p\hat{j} + 2\hat{k}$ and $\vec{b} = 2\hat{i} + 3\hat{j} + q\hat{k}$ are parallel vectors if $P = \frac{3}{2}$, q = 4

Statement-2: If
$$\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$$
 and $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ are parallel then $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}$

- **483.** Statement-1: If $\vec{a} = 2\hat{i} + \hat{k}\hat{a}_1, \hat{a}_3, \hat{a}_3, \dots, \hat{a}_n, \vec{b} = 3\hat{j} + 4\hat{k}$ and $\vec{c} = 8\hat{i} 3\hat{j}$ are coplanar then $\vec{c} = 4\vec{a} \vec{b}$ Statement-2: A set of vectors is said to be linearly independent if every relation of the form $l_1\vec{a} + l_2\vec{a}_2 + \dots + l_n\vec{a}_n = 0 \Rightarrow l_1 = l_2 = \dots = l_n = 0.$
- **484.** Statement-1: The shortest distance between the skew lines $\vec{r} = \vec{a}_1 + \alpha \vec{b}_1$ and $\vec{r} = \vec{a}_2 + \beta \vec{b}_2$ is $\left| \frac{[\vec{b}_1 \vec{b}_2 (\vec{a}_2 \vec{a}_1)]}{(\vec{b}_1 \times \vec{b}_2)} \right|$ Statement-2: Two lines are skew lines if there exists no plane passing through them.
- 485. Statement-1: The value of expression $\hat{i}(\hat{j}\times\hat{k}) + \hat{j}(\hat{k}\times\hat{i}) + \hat{k}(\hat{i}\times\hat{j}) = 3$ Statement-2: $\hat{i}(\hat{j}\times\hat{k}) = [\hat{i}.\hat{j}.\hat{k}] = 1$

486. Statement-1: A relation between the vectors \vec{r}, \vec{a} and \vec{b} is $\vec{r} \times \vec{a} = \vec{b} \Rightarrow \vec{r} = \frac{\vec{a} \times \vec{b}}{\vec{a}.\vec{a}}$ Statement-2: $\vec{r}.\vec{a} = 0$

3-Dimension

- **487.** The equation of two straight line are $\frac{x-1}{2} = \frac{y+3}{1} = \frac{z-2}{-3}$ and $\frac{x-2}{1} = \frac{y-1}{-3} = \frac{z+3}{2}$
 - Statement–1 : The given lines are coplanar
 - **Statement-2** : The equation $2x_1 y_1 = 1$, $x_1 + 3y_1 = 4$, $3x_1 + 2y_1 = 5$ are consistent.
- **488.** Statement-1 : The distance between the planes 4x 5y + 3z = 5 and 4x 5y + 3z + 2 = 0 is $\frac{3}{5\sqrt{2}}$. Statement-2 The distance between $ax + by + cz + d_1 = 0$ and $ax + by + cz + d_2$

= 0 is
$$\left| \frac{d_1 - d_2}{\sqrt{a^2 + b^2 + c^2}} \right|$$

489. Given the line $\frac{x-1}{3} = \frac{y+1}{2} = \frac{z-3}{-1}$ and the plane $\pi : x - 2y - z = 0$ Statement-1: L lies in π 490. The image of the point (1, b, 3) in the Statement-1: Line $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$ will be (1, 0, 7) Statement-2: Length of the perpendicular from the point A($\overline{\alpha}$) on the line $\vec{r} = \vec{a} + t\vec{b}$, is given by d =

$$\frac{|(\overline{a} - \overline{\alpha}) \times \overline{b}|}{|\overline{b}|}$$

Answer

452. C	453. A	454. D	455. D	456. D	457. A	458. C
459. A	460. C	461. A	462. A	463. A	464. A	465. A
466. A	467. B	468. B	469. D	470. D	471. A	472. A
473. C	474. A	475. A	476. B	477. A	478. B	479. B
480. A	481. C	482. A	483. B	484. B	485. A	486. A
487. A	488. D	489. C	490. B			

Que from Compt. Exams

Co-ordinate Geometry of Three Dimensions The direction cosines of a line segment AB are $-2/\sqrt{17}$, $3/\sqrt{17}$, $-2/\sqrt{17}$. If $AB = \sqrt{17}$ and the co-ordinates of A are $(3, -2)/\sqrt{17}$. 1. 6, 10), then the co-ordinates of B are (b) (2, 5, 8) (-1, 3, -8)(d) (a) (1, -2, 4)(c) (1, -3, 8)The projection of any line on co-ordinate axes be respectively 3, 4, 5 then its length is [MP PET 1995; RPET 2001] 2. (a) 12 (b) 50 (c) $5\sqrt{2}$ (d) None of these If centroid of the tetrahedron OABC, where A, B, C are given by (a, 2, 3), (1, b, 2) and (2, 1, c) respectively be (1, 2, -1),3. then distance of P(a, b, c) from origin is equal to (a) $\sqrt{107}$ (b) $\sqrt{14}$ $\sqrt{107/14}$ (c) (d) None of these If $P \equiv (0,1,0), Q \equiv (0,0,1)$, then projection of PQ on the plane x + y + z = 3 is [EAMCET 2002] 4. $\sqrt{2}$ (a) $\sqrt{3}$ (b) 3 (c) (d) 2 The points A(4, 5, 1), B(0, -1, -1), C(3, 9, 4) and D(-4, 4, 4) are 5. [Kurukshetra CEE 2002] (a) Collinear (b) Coplanar (c) Non-coplanar (d) Non-Collinear and non-coplanar The angle between two diagonals of a cube will be [MP PET 1996, 2000; RPET 2000, 02; UPSEAT 2004] 6. (a) $\sin^{-1} 1/3$ (b) $\cos^{-1} 1/3$ Variable (d) (c) None of these The equations of the line passing through the point (1,2,-4) and perpendicular to the two lines $\frac{x-8}{3} = \frac{y+19}{-16} = \frac{z-10}{7}$ and 7. $\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$, will be [AI CBSE 1983] (a) $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z+4}{6}$ (b) $\frac{x-1}{-2} = \frac{y-2}{3} = \frac{z+4}{8}$ (c) $\frac{x-1}{3} = \frac{y-2}{2} = \frac{z+4}{8}$ (d) None of these 8. If three mutually perpendicular lines have direction cosines $(l_1, m_1, n_1), (l_2, m_2, n_2)$ and (l_3, m_3, n_3) , then the line having direction cosines $l_1 + l_2 + l_3$, $m_1 + m_2 + m_3$ and $n_1 + n_2 + n_3$ make an angle of with each other (a) 0° (b) 30° (c) 60° (d) The straight lines whose direction cosines are given by al + bm + cn = 0, fmn + gnl + hlm = 0 are perpendicular, if 9. (a) $\frac{f}{a} + \frac{g}{b} + \frac{h}{c} = 0$ (b) $\sqrt{\frac{a}{f}} + \sqrt{\frac{b}{g}} + \sqrt{\frac{c}{h}} = 0$ (c) $\sqrt{af} = \sqrt{bg} = \sqrt{ch}$ (d) $\sqrt{\frac{a}{f}} = \sqrt{\frac{b}{\sigma}} = \sqrt{\frac{c}{h}}$ If the straight lines x = 1 + s, $y = -3 - \lambda s$, $z = 1 + \lambda s$ and x = t/2, y = 1 + t, z = 2 - t, with parameters s and t respectively, 10. are co-planar, then λ equals [AIEEE 2004] (a) 0 (c) -1/2 (d) -2 (b) -1The co-ordinates of the foot of perpendicular drawn from point P(1, 0, 3) to the join of points A(4, 7, 1) and B(3, 5, 3) is [RPET 01] 11. (b) $\left(\frac{5}{3}, \frac{7}{3}, \frac{17}{3}\right)$ (c) $\left(\frac{2}{3}, \frac{5}{3}, \frac{7}{3}\right)$ (d) $\left(\frac{5}{3}, \frac{2}{3}, \frac{7}{3}\right)$ (a) (5,7,1)

12. If the lines
$$\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4}$$
 and $\frac{x-3}{1} = \frac{y-k}{1} = \frac{z}{1}$ intersect, then $k =$ [IIT Screening 2004]

(a)
$$\frac{2}{9}$$
 (b) $\frac{9}{2}$ (c) 0 (d) None of these
13. A square ABCD of diagonal 2a is folded along the diagonal AC so that the planes DAC and BAC are at right angle. The
shortest distance between DC and AB is [Korakstera CEE 1998]
(a) $\sqrt{2a}$ (b) $2a/\sqrt{3}$ (c) $2a/\sqrt{5}$ (c) $2a/\sqrt{5}$ (d) $(\sqrt{5}/2y_{1})$
14. A line with director exvines proportional to 2,1,2 mests each of the lines $x = y + a = z$ and $x + a = 2y = 2z$. The co-ordinates
of each of the points of intersection are given by
(a) $(2a, a, 3a), (2a, a, a)$ (b) $(3a, 2a, 3a), (a, a, a)$ (c) $(3a, 2a, 3a), (a, a, 2a)$ (d) $(3a, 3a, 3a), (a, a, a)$
(a) $(2a, a, 3a), (2a, a, a)$ (b) $(3a, 2a, 3a), (a, a, a)$ (c) $(3a, 2a, 3a), (a, a, 2a)$ (d) $(3a, 3a, 3a), (a, a, a)$
(i) $(x + 2y - 2z - 3 = 0, 2x + y - 2z + 3 = 0$ (d) None of these
(i) $x - 2y - 2z - 3 = 0, 2x + y - 2z + 3 = 0$ (d) None of these
15. The equation of the plane passing through the points (1-3x - 2) and perpendicular to planes $x + 2y + 2z = 5$ and
 $3x + 3y + 2z = 3$, is (ASSS 1997)
(a) $2x - 4y + 2z = 8 = 0$ (c) $2x + 4y - 2z + 8 = 0$ (c) None of these
17. The equation of the plane passing through the points (1-3x - 2) and perpendicular to planes $x + 2y + 2z = 5$ and
 $3x + 3y + 2z = 8$, is (ASSS 1997)
(a) $2x - 4y + 2z = 8 = 0$ (b) $2x - 4y - 2z + 8 = 0$ (c) $2x + 4y + 3z + 8 = 0$ (d) None of these
18. A variable plane at a constant distance p from origin mests the co-ardinates areas in A, B, C . Through these points planes are
drave parallel to co-ordinate planes. The boots of the point of intersection is equal to
(a) $\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = \frac{1}{y^2}$ (b) $x^2 + y^2 + z^2 + 8^{-2}$ (c) $\frac{3a}{2}$ (d) None of these
20. The equation of the plane through the origin equally inclined to the saxes, then any plane through the perpendicular to OP,
makes intercepts on the axes, the sum of the planes $x + 2y + 3z - 4 = 0$ (d) $17x + 14y + z = 0$
21. The dx's of normal to the plane through the origin equally inclined to the saxes, then any plane through the erig

(a) 7	(b) – 7	(c)	No real	l value	(d)	4	
The shortest distant	ce from the plane $12x + 4y + 3z = 327$	to the sphe	re $x^2 + y^2$	$+z^{2}+$	4x - 2y -	6z = 155 is	s [AIEEE 2003]
(a) 26	(b) $11\frac{4}{13}$	(c)	13	(d)	39		

29. The radius of the circle in which the sphere $x^2 + y^2 + z^2 + 2x - 2y - 4z - 19 = 0$ is cut by the plane x + 2y + 2z + 7 = 0 is (a) 1 (b) 2 (c) 3 (d) 4 [AIEEE 2003]

- **30.** The equation of motion of a rocket are: x = 2t, y = -4t, z = 4t where the time 't' is given in seconds, and the co-ordinates of a moving point in kilometers. What is the path of the rocket? At what distance will be the rocket be from the starting point 0(0, 0, 0) in 10 seconds
 - (a) Straight line, 60 km (b) Straight line, 30 km (c) Parabola, 60 km (d) Ellipse, 60 km
- **31.** The plane lx + my = 0 is rotated an angle α about its line of intersection with the plane z = 0, then the equation to the plane in its new position is
 - (a) $lx + my \pm z\sqrt{(l^2 + m^2)} \tan \alpha = 0$
 - (b) $lx my \pm z\sqrt{(l^2 + m^2)} \tan \alpha = 0$ (c) $lx + my \pm z\sqrt{(l^2 + m^2)} \cos \alpha = 0$ (d) $lx - my \pm z\sqrt{(l^2 + m^2)} \cos \alpha = 0$
- **32.** The distance between two points P and Q is d and the length of their projections of PQ on the co-ordinate planes are d_1, d_2, d_3 . Then $d_1^2 + d_2^2 + d_3^2 = kd^2$ where 'k' is
 - (a) 1 (b) 5
 - (c) 3 (d) 2
- **33.** If P_1 and P_2 are the lengths of the perpendiculars from the points (2,3,4) and (1,1,4) respectively from the plane 3x-6y+2z+11=0, then P_1 and P_2 are the roots of the equation
 - (a) $P^2 23P + 7 = 0$ (b) $7P^2 - 23P + 16 = 0$ (c) $P^2 - 17P + 16 = 0$ (d) $P^2 - 16P + 7 = 0$

(b) *a*

34. The edge of a cube is of length 'a' then the shortest distance between the diagonal of a cube and an edge skew to it is

(a)
$$a\sqrt{2}$$

(c) $\sqrt{2}/a$ (d) $a/\sqrt{2}$

Que from Compt. Exams

Co-ordinate Geometry of Three Dimensions

1	d	2	С	3	а	4	С	5	b
6	b	7	а	8	а	9	а	10	d
11	b	12	b	13	b	14	b	15	а
16	b	17	а	18	а	19	d	20	b
21	b	22	d	23	С	24	а	25	а
26	С	27	с	28	а	29	с	30	с
31	а	32	а	33	d	34	b	35	d

Que from Compt. Exams

<u>Vector Algebra</u>

- Three forces of magnitudes 1, 2, 3 dynes meet in a point and act along diagonals of three adjacent faces of a cube. The resultant force is

 (a) 114 dyne
 (b) 6 dyne
 (c) 5 dyne
 (d) None of these
- 2. The vectors **b** and **c** are in the direction of north-east and north-west respectively and $|\mathbf{b}| = |\mathbf{c}| = 4$. The magnitude and direction of the vector $\mathbf{d} = \mathbf{c} \mathbf{b}$, are **[Roorkee 2000]**
 - (a) $4\sqrt{2}$, towards north (b) $4\sqrt{2}$, towards west (c) 4, towards east (d) 4, towards south
- **3.** If **a**, **b** and **c** are unit vectors, then $||\mathbf{a} \mathbf{b}|^2 + ||\mathbf{b} \mathbf{c}|^2 + ||\mathbf{c} \mathbf{a}|^2$ does not exceed **[IIT Screening 2001]** (a) 4 (b) 9 (c) 8 (d) 6
- 4. The vectors $\overrightarrow{AB} = 3\mathbf{i} + 5\mathbf{j} + 4\mathbf{k}$ and $\overrightarrow{AC} = 5\mathbf{i} 5\mathbf{j} + 2\mathbf{k}$ are the sides of a triangle *ABC*. The length of the median through *A* is **[UPSEAT 2004]**

(a)
$$\sqrt{13}$$
 unit (b) $2\sqrt{5}$ unit (c) 5 unit (d) 10 unit

5. Let the value of $\mathbf{p} = (x+4y)\mathbf{a} + (2x+y+1)\mathbf{b}$ and $\mathbf{q} = (y-2x+2)\mathbf{a} + (2x-3y-1)\mathbf{b}$, where **a** and **b** are non-collinear vectors. If $3\mathbf{p} = 2\mathbf{q}$, then the value of x and y will be **[RPET 1984; MNR 1984]**

6.	(a) $-1, 2$ The points <i>D</i> , <i>E</i> , <i>F</i> divide <i>K</i> divides <i>AB</i> in the ratio					ctively and the point
					[MNR 1987]	
_	(a) 1:1	(b) 2:5	(C)	5:2 (d)	None of these	-l
7•	If two vertices of a triangl					rkee 1995]
	(a) $\mathbf{i} + \mathbf{k}$	(b) $i - 2j - k$	(c)	i – k (d)	2 i – j	
	(e) All the above					
8.	If a of magnitude 50 is	collinear with the	vector $\mathbf{b} = 6\mathbf{i} - 8$	$i - \frac{15 k}{m}$, and mak	tes an acute ang	le with the positive
				2	· · · · ·	, I
	direction of <i>z</i> -axis, then the	ne vector a is equal	to			[Pb. CET 2004]
	(a) $24 i - 32 j + 30 k$	(b) $-24 i + 32 j$	i + 30 k (c)	16i - 16i - 15k	(d) _12 i	$\pm 16 i = 30 k$
•						
9.	If three non-zero vectors	s are $\mathbf{a} = a_1 \mathbf{I} + a_2 \mathbf{J}$	$a_3 \mathbf{k}, \ \mathbf{b} = b_1 \mathbf{l} + b_2$	$_{2}\mathbf{J} + b_{3}\mathbf{K}$ and $\mathbf{C} = c_{1}$	$_{1}\mathbf{I} + c_{2}\mathbf{J} + c_{3}\mathbf{K}$. II	c is the unit vector
					$\begin{vmatrix} a_1 & a_2 & a_3 \end{vmatrix}^2$	
	perpendicular to the vector	ors a and b and the	angle between a a	and b is $\frac{\pi}{2}$, then	$b_1 \ b_2 \ b_3$	is equal to
	perpendicular to the vector		0	6		1
	(a) o	(b) $\frac{3(\Sigma a_1^2)(\Sigma b_1^2)}{\Sigma a_1^2}$	$\frac{(\Sigma c_1^2)}{(\Sigma c_1^2)}$ (c)	1 (d)	$(\Sigma a_1^2)(\Sigma b_1^2)$	
		+			+	
10.	Let the unit vectors a and			vector \mathbf{c} be incline	ed at an angle θ	to both a and b . If
	$\mathbf{c} = \alpha \mathbf{a} + \beta \mathbf{b} + \gamma (\mathbf{a} \times \mathbf{b}), \mathbf{t}$	hen [Oris	sa JEE 2003]			
	(a) $\alpha = \beta = \cos \theta, \gamma^2 = c$	$\cos 2\theta$	(b)	$\alpha = \beta = \cos \theta, \gamma$	$v^2 = -\cos 2\theta$	
	(c) $\alpha = \cos \theta, \ \beta = \sin \theta, \ \beta$	$\gamma^2 = \cos 2\theta$	(d)	None of these		
11	The vector $\mathbf{a} + \mathbf{b}$ bisects	-				
11.	(a) $ \mathbf{a} = \mathbf{b} $		or angle between			
	(c) $ \mathbf{a} = m \mathbf{b} $	(d)	None of these			
12.	The points O, A, B, C, D	are such that \overrightarrow{OA}	$= \mathbf{a}, \overrightarrow{OB} = \mathbf{b}, \overrightarrow{OC}$	$\vec{C} = 2\mathbf{a} + 3\mathbf{b}$ and \vec{O}	$\overrightarrow{D} = \mathbf{a} - 2\mathbf{b}$. If	$\mathbf{a} \mid = 3 \mid \mathbf{b} \mid$, then the
	angle between \overrightarrow{BD} and \overrightarrow{A}	\overrightarrow{AC} is				
	-			π (1)		
	(a) $\frac{\pi}{3}$	(b) $\frac{\pi}{4}$	(c)	$\frac{1}{6}$ (d)	None of these	
10	If $\vec{A} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$, $\vec{B} = -\mathbf{i} - \mathbf{i}$					
13.	If $A = \mathbf{I} + 2\mathbf{J} + 3\mathbf{K}$, $D = -\mathbf{I} - \mathbf{I}$	$+2\mathbf{j}+\mathbf{k}$ and $\mathbf{C}=\mathbf{M}$	+ J , then the value	a = 01 t such that $A + 1$	<i>ib</i> is at right any	[RPET 2002]
	(a) 2	(b) 4	(c)	5 (d)	6	[KFEI 2002]
14.	Let $\mathbf{b} = 4\mathbf{i} + 3\mathbf{j}$ and \mathbf{c} be					e same plane having
•	projections 1 and 2 along			[IIT 1987]		1 0
	(a) $2i - j, \frac{2}{5}i + \frac{11}{5}j$				• (4) • • •	. 2. 11.
	(a) $2\mathbf{i} - \mathbf{j}, \frac{-1}{5} + \frac{-1}{5}\mathbf{j}$	(b) $2\mathbf{i} + \mathbf{j}, -\frac{1}{5}$	$1 + \frac{1}{5}$ (c)	$21 + j_{,} - \frac{-1}{5} - \frac{-1}{5}$	J(0) = 21 - 1	$J_{1}, -\frac{1}{5}I + \frac{1}{5}J$
15.	Let $a = 2i - j + k$, $b = i + j + k$	$2\mathbf{j} - \mathbf{k}$ and $\mathbf{c} = \mathbf{i} + \mathbf{k}$	$\mathbf{j} - 2\mathbf{k}$ be three ve	ectors. A vector in t	he plane of b and	d c whose projection
-					-	1 0
	on a is of magnitude $\sqrt{2}$	5 18			Глут	1993; Pb. CET 2004]
	(a) $2i + 3j - 3k$	(b) $2i + 3j + 3l$	к (c)	-2i - j + 5k		j+5k
16.	A vector \mathbf{a} has component	-		-		•
10.	certain angle about the o					
	system, then		[IIT 1984]	a nuo componenta	p - 1 and 1 mu	respect to the new
	(a) a 0	(b) 1 or		1 on 1	(d)	Lon 1
	(a) $p = 0$	(b) $p = 1$ or -	$\frac{1}{3}$ (C)	$p = -1 \text{ or } \frac{1}{3}$	$(\mathbf{u}) \qquad p = 1$	1 OF -1
17.	If $\mathbf{u} = 2\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ and $\mathbf{v} =$	$= 6 \mathbf{i} - 3 \mathbf{j} + 2 \mathbf{k}$, then	n a unit vector per	pendicular to both ı	1 and v is	[MP PET 1987]
		- 1 (1	18	1		
	(a) $i - 10 j - 18 k$	(b) $\frac{1}{\sqrt{17}} \left \frac{1}{5} i - \frac{1}{5} i \right $	$2\mathbf{j} - \frac{10}{5}\mathbf{k}$ (c)	$\frac{1}{\sqrt{473}}$ (7 i - 10 j -	$-18{\bf k}$) (d)	None of these
10	If $a = 2i + b + b = 2 + 2 + b$	VI/ (-	- /	V 475		
18.	If $\mathbf{a} = 2\mathbf{i} + \mathbf{k}$, $\mathbf{b} = \mathbf{i} + \mathbf{j} + \mathbf{k}$					1990]
	(a) $i + 8j + 2k$	(b) $i - 8j + 2k$		$-\mathbf{i} + 8\mathbf{j} - \mathbf{k}$		8 j + 2 k
19.	If $\mathbf{a} \times \mathbf{r} = \mathbf{b} + \lambda \mathbf{a}$ and \mathbf{a} .	$\mathbf{r} = 3$, where $\mathbf{a} = 2i$	$\mathbf{i} + \mathbf{j} - \mathbf{k}$ and $\mathbf{b} = -$	$-\mathbf{i} - 2\mathbf{j} + \mathbf{k}$, then \mathbf{r} as	nd λ are equal to	
	(a) $\mathbf{r} = \frac{7}{6}\mathbf{i} + \frac{2}{3}\mathbf{j}, \ \lambda = \frac{6}{5}$	(b) $r = \frac{7}{3} + \frac{2}{3}$	$1 - \frac{5}{2}$ (a)	$r = \frac{6}{3} + \frac{2}{3} + \frac{2}{3}$	$=\frac{6}{1}$ (d)	None of these
	$\frac{1}{6} - \frac{1}{3} + \frac{1}{3} - \frac{1}{5}$	$\frac{1}{6} - \frac{1}{6} + \frac{1}{3}$	$\int_{0}^{\pi} \frac{\pi}{6} = \frac{1}{6}$	$r = \frac{1}{7}r + \frac{1}{3}r$	5	TIONE OF MESE
			75 of 77			
			/5 01 //			

20.	Let the vectors a , b , c and b and c , d respectively. Th				planes determined by pair of vectors a , 000; MP PET 2004]
	(a) 0^{o}	(b) $\frac{\pi}{4}$	(c)	$\frac{\pi}{3}$ (d)	$\frac{\pi}{2}$
21.	If $\mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{k}$, $\mathbf{a} \cdot \mathbf{b} = 1$ and	7		3 [IIT Screenin	
	(a) i	(b) $\mathbf{i} - \mathbf{j} + \mathbf{k}$	(c)	$2\mathbf{j} - \mathbf{k}$ (d)	2i
22.		-			l respectively. Area of the quadrilateral
	formed by joining the mide	lle points of its sides is		[Roorkee 20	00]
	(a) $\frac{1}{4}$ $\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{d} + \mathbf{d} \times \mathbf{a}$	I	(b)	$\frac{1}{4} \mathbf{b}\times\mathbf{c}+\mathbf{c}\times$	$\mathbf{d} + \mathbf{a} \times \mathbf{d} + \mathbf{b} \times \mathbf{a}$
	(c) $\frac{1}{4} \mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{d} + $	$ \mathbf{d} \times \mathbf{a} $	(d)	$\frac{1}{4} \mathbf{b}\times\mathbf{c}+\mathbf{c}\times$	$\mathbf{d} + \mathbf{d} \times \mathbf{b}$
23.	The moment about the poi	nt $M(-2, 4, -6)$ of the force	e represent	ed in magnitud	le and position by \overrightarrow{AB} where the points
	A and B have the co-ordina	tes (1, 2, -3) and (3, -4, 2)	respective	ly, is	[MP PET 2000]
		(b) $2i - 6j + 5k$			
24.					hen the value of $\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} =$
	[BIT Ranchi 1988; RPET 1987				
	(a) – 1	(b) $-\frac{1}{2}$	(c)	$\frac{1}{2}$ (d)	1
25.	If $\alpha(\mathbf{a} \times \mathbf{b}) + \beta(\mathbf{b} \times \mathbf{c}) + \gamma(\mathbf{c})$	$(\times \mathbf{a}) = 0$ and at least one of	of the numb	ers α , β and β	<i>v</i> is non-zero, then the vectors a , b and
26.	c are (a) Perpendicular The volume of the tetrahed	(b) Parallel Iron, whose vertices are gi	(c) ven by the	Coplanar vectors – i + i +	(d) None of these \mathbf{k} , $\mathbf{i} - \mathbf{j} + \mathbf{k}$ and $\mathbf{i} + \mathbf{j} - \mathbf{k}$ with reference
	to the fourth vertex as orig				
			(c)	$\frac{3}{5}$ cubic unit	(d) None of these
27.	Let $\mathbf{a} = \mathbf{i} - \mathbf{j}$, $\mathbf{b} = \mathbf{j} - \mathbf{k}$, $\mathbf{c} =$	$\mathbf{k} - \mathbf{i}$. If $\hat{\mathbf{d}}$ is a unit vector s	such that a	$\hat{\mathbf{d}} = 0 = [\mathbf{b} \ \mathbf{c} \ \hat{\mathbf{d}}]$], then $\hat{\mathbf{d}}$ is equal to [IIT 1995]
	(a) $\pm \frac{\mathbf{i} + \mathbf{j} - \mathbf{k}}{\sqrt{3}}$	(b) $\pm \frac{\mathbf{i} + \mathbf{j} + \mathbf{k}}{\sqrt{3}}$	(c)	$\pm \frac{\mathbf{i} + \mathbf{j} - 2\mathbf{k}}{\sqrt{6}}$	(d) $\pm \mathbf{k}$
28.	VS	V S		VO	and $a\mathbf{i} + \mathbf{k}$ becomes minimum is
28.	The value of 'a' so that the	volume of parallelopiped f	ormed by i	$+ a\mathbf{j} + \mathbf{k}, \mathbf{j} + a \mathbf{k}$	and $a\mathbf{i} + \mathbf{k}$ becomes minimum is [IIT Screening 2003]
28.	VS	V S	ormed by i	VO	and $a\mathbf{i} + \mathbf{k}$ becomes minimum is [IIT Screening 2003]
	The value of 'a' so that the (a) -3	volume of parallelopiped f	formed by i	$+ a\mathbf{j} + \mathbf{k}, \mathbf{j} + a\mathbf{k}$ $\frac{1}{\sqrt{3}} \qquad (d)$	and $a\mathbf{i} + \mathbf{k}$ becomes minimum is [IIT Screening 2003]
	The value of 'a' so that the (a) -3 If b and c are any two non-	volume of parallelopiped f (b) 3 collinear unit vectors and	ormed by i (c) a is any vec	+ $a\mathbf{j} + \mathbf{k}, \mathbf{j} + a\mathbf{k}$ $\frac{1}{\sqrt{3}}$ (d) stor, then $(\mathbf{a} \cdot \mathbf{b})$	and $a\mathbf{i} + \mathbf{k}$ becomes minimum is [IIT Screening 2003] $\sqrt{3}$ $\mathbf{b} + (\mathbf{a} \cdot \mathbf{c})\mathbf{c} + \frac{\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})}{ \mathbf{b} \times \mathbf{c} } (\mathbf{b} \times \mathbf{c}) =$ [IIT 1996]
29.	The value of 'a' so that the (a) -3 If b and c are any two non- (a) a	volume of parallelopiped f (b) 3 collinear unit vectors and (b) b	ormed by i (c) a is any vec (c)	+ $a\mathbf{j} + \mathbf{k}, \mathbf{j} + a\mathbf{k}$ $\frac{1}{\sqrt{3}}$ (d) tor, then $(\mathbf{a} \cdot \mathbf{b})$ c (d)	and $a\mathbf{i} + \mathbf{k}$ becomes minimum is [IIT Screening 2003] $\sqrt{3}$ $\mathbf{b} + (\mathbf{a} \cdot \mathbf{c})\mathbf{c} + \frac{\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})}{ \mathbf{b} \times \mathbf{c} } (\mathbf{b} \times \mathbf{c}) =$ [IIT 1996] O
	The value of 'a' so that the (a) -3 If b and c are any two non- (a) a	volume of parallelopiped f (b) 3 collinear unit vectors and (b) b	ormed by i (c) a is any vec (c)	+ $a\mathbf{j} + \mathbf{k}, \mathbf{j} + a\mathbf{k}$ $\frac{1}{\sqrt{3}}$ (d) tor, then $(\mathbf{a} \cdot \mathbf{b})$ c (d)	and $a\mathbf{i} + \mathbf{k}$ becomes minimum is [IIT Screening 2003] $\sqrt{3}$ $\mathbf{b} + (\mathbf{a} \cdot \mathbf{c})\mathbf{c} + \frac{\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})}{ \mathbf{b} \times \mathbf{c} } (\mathbf{b} \times \mathbf{c}) =$ [IIT 1996]
29.	The value of 'a' so that the (a) -3 If b and c are any two non- (a) a If a , b , c are non-coplanar	volume of parallelopiped f (b) 3 collinear unit vectors and (b) b unit vectors such that a ×	formed by i (c) a is any vec (c) (b × c) = $\frac{\mathbf{b} + \mathbf{c}}{\sqrt{2}}$	+ $a\mathbf{j} + \mathbf{k}, \mathbf{j} + a\mathbf{k}$ $\frac{1}{\sqrt{3}}$ (d) tor, then (a . b) c (d) $\frac{\mathbf{c}}{2}$, then the an	and $a\mathbf{i} + \mathbf{k}$ becomes minimum is [IIT Screening 2003] $\sqrt{3}$ $\mathbf{b} + (\mathbf{a} \cdot \mathbf{c})\mathbf{c} + \frac{\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})}{ \mathbf{b} \times \mathbf{c} } (\mathbf{b} \times \mathbf{c}) =$ [IIT 1996] O agle between \mathbf{a} and \mathbf{b} is [IIT 1995]
29. 30.	The value of 'a' so that the (a) -3 If b and c are any two non- (a) a If a , b , c are non-coplanar (a) $\frac{\pi}{4}$	(b) 3 (c) b (b) b unit vectors such that $\mathbf{a} \times$ (b) $\frac{\pi}{2}$	ormed by i (c) a is any vec (c)	+ $a\mathbf{j} + \mathbf{k}, \mathbf{j} + a\mathbf{k}$ $\frac{1}{\sqrt{3}}$ (d) tor, then (a . b) c (d) $\frac{\mathbf{c}}{2}$, then the an	and $a\mathbf{i} + \mathbf{k}$ becomes minimum is [IIT Screening 2003] $\sqrt{3}$ $\mathbf{b} + (\mathbf{a} \cdot \mathbf{c})\mathbf{c} + \frac{\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})}{ \mathbf{b} \times \mathbf{c} } (\mathbf{b} \times \mathbf{c}) =$ [IIT 1996] O
29.	The value of 'a' so that the (a) -3 If b and c are any two non- (a) a If a , b , c are non-coplanar (a) $\frac{\pi}{4}$ [(a × b)×(b × c)(b × c)×(c ×	(b) 3 (collinear unit vectors and (b) b unit vectors such that $\mathbf{a} \times$ (b) $\frac{\pi}{2}$ (c) $(\mathbf{a} \times \mathbf{a}) \times (\mathbf{a} \times \mathbf{b})] =$	formed by i (c) a is any vec (c) (b × c) = $\frac{\mathbf{b} + \mathbf{b}}{\sqrt{2}}$ (c)	$+ a\mathbf{j} + \mathbf{k}, \mathbf{j} + a\mathbf{k}$ $\frac{1}{\sqrt{3}} \qquad \text{(d)}$ tor, then $(\mathbf{a} \cdot \mathbf{b})$ $\mathbf{c} \qquad \text{(d)}$ $\frac{-\mathbf{c}}{2}, \text{ then the an}$ $\frac{3\pi}{4} \qquad \text{(d)}$	and $a\mathbf{i} + \mathbf{k}$ becomes minimum is [IIT Screening 2003] $\sqrt{3}$ $\mathbf{b} + (\mathbf{a} \cdot \mathbf{c})\mathbf{c} + \frac{\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})}{ \mathbf{b} \times \mathbf{c} } (\mathbf{b} \times \mathbf{c}) =$ [IIT 1996] 0 agle between \mathbf{a} and \mathbf{b} is [IIT 1995] π
29. 30.	The value of 'a' so that the (a) -3 If b and c are any two non- (a) a If a , b , c are non-coplanar (a) $\frac{\pi}{4}$	(b) 3 (c) b (b) b unit vectors such that $\mathbf{a} \times$ (b) $\frac{\pi}{2}$	formed by i (c) a is any vec (c) (b × c) = $\frac{\mathbf{b} + \mathbf{c}}{\sqrt{2}}$	$+ a\mathbf{j} + \mathbf{k}, \mathbf{j} + a\mathbf{k}$ $\frac{1}{\sqrt{3}} (\mathbf{d})$ tor, then $(\mathbf{a} \cdot \mathbf{b})$ $\mathbf{c} (\mathbf{d})$ $\frac{\mathbf{c}}{2}, \text{ then the an}$ $\frac{3\pi}{4} (\mathbf{d})$	and $a\mathbf{i} + \mathbf{k}$ becomes minimum is [IIT Screening 2003] $\sqrt{3}$ $\mathbf{b} + (\mathbf{a} \cdot \mathbf{c})\mathbf{c} + \frac{\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})}{ \mathbf{b} \times \mathbf{c} } (\mathbf{b} \times \mathbf{c}) =$ [IIT 1996] O agle between \mathbf{a} and \mathbf{b} is [IIT 1995]
29. 30.	The value of 'a' so that the (a) -3 If b and c are any two non- (a) a If a , b , c are non-coplanar (a) $\frac{\pi}{4}$ [(a × b)×(b × c)(b × c)×(c × (a) [a b c] ²	(b) 3 (collinear unit vectors and (b) b unit vectors such that $\mathbf{a} \times$ (b) $\frac{\pi}{2}$ (c) $(\mathbf{x} \times \mathbf{a}) \times (\mathbf{a} \times \mathbf{b})] =$ (b) $[\mathbf{a} \ \mathbf{b} \ \mathbf{c}]^3$	formed by i (c) a is any vec (c) (b × c) = $\frac{\mathbf{b} + \mathbf{b}}{\sqrt{2}}$ (c) (c) (c)	$+ a\mathbf{j} + \mathbf{k}, \mathbf{j} + a\mathbf{k}$ $\frac{1}{\sqrt{3}} \qquad (d)$ tor, then $(\mathbf{a} \cdot \mathbf{b})$ $\mathbf{c} \qquad (d)$ $\mathbf{c} \qquad (d)$ $\frac{\mathbf{c}}{2}, \text{ then the an}$ $\frac{3\pi}{4} \qquad (d)$ $[\mathbf{a} \ \mathbf{b} \ \mathbf{c}]^4 \ (d)$	and $a\mathbf{i} + \mathbf{k}$ becomes minimum is [IIT Screening 2003] $\sqrt{3}$ $\mathbf{b} + (\mathbf{a} \cdot \mathbf{c})\mathbf{c} + \frac{\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})}{ \mathbf{b} \times \mathbf{c} } (\mathbf{b} \times \mathbf{c}) =$ [IIT 1996] 0 agle between \mathbf{a} and \mathbf{b} is [IIT 1995] π
29. 30. 31.	The value of 'a' so that the (a) -3 If b and c are any two non- (a) a If a , b , c are non-coplanar (a) $\frac{\pi}{4}$ [(a × b)×(b × c)(b × c)×(c × (a) [a b c] ² Unit vectors a , b and c are the angle between a and b	volume of parallelopiped f (b) 3 collinear unit vectors and (b) b unit vectors such that $\mathbf{a} \times$ (b) $\frac{\pi}{2}$ $(\mathbf{a} \times \mathbf{a}) \times (\mathbf{a} \times \mathbf{b})] =$ (b) $[\mathbf{a} \mathbf{b} \mathbf{c}]^3$ the coplanar. A unit vector \mathbf{c} is 30°, then c is	formed by i (c) a is any vec (c) (b × c) = $\frac{\mathbf{b} + \sqrt{2}}{\sqrt{2}}$ (c) (c) (c) i is perpend	$+ a\mathbf{j} + \mathbf{k}, \mathbf{j} + a\mathbf{k}$ $\frac{1}{\sqrt{3}} \qquad (d)$ tor, then $(\mathbf{a} \cdot \mathbf{b})$ $\mathbf{c} \qquad (d)$ $\frac{\mathbf{c}}{2}, \text{ then the an}$ $\frac{3\pi}{4} \qquad (d)$ $[\mathbf{a} \ \mathbf{b} \ \mathbf{c}]^4 \ (d)$ licular to them [Roorkee Qu	and $a\mathbf{i} + \mathbf{k}$ becomes minimum is [IIT Screening 2003] $\sqrt{3}$ $\mathbf{b} + (\mathbf{a} \cdot \mathbf{c})\mathbf{c} + \frac{\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})}{ \mathbf{b} \times \mathbf{c} } (\mathbf{b} \times \mathbf{c}) =$ [IIT 1996] 0 IIT 1996] π None of these . If $(\mathbf{a} \times \mathbf{b}) \times (\mathbf{c} \times \mathbf{d}) = \frac{1}{6}\mathbf{i} - \frac{1}{3}\mathbf{j} + \frac{1}{3}\mathbf{k}$ and alifying 1998]
29. 30. 31.	The value of 'a' so that the (a) -3 If b and c are any two non- (a) a If a , b , c are non-coplanar (a) $\frac{\pi}{4}$ [(a × b)×(b × c)(b × c)×(c × (a) [a b c] ² Unit vectors a , b and c are	(b) 3 (collinear unit vectors and (b) b unit vectors such that $\mathbf{a} \times$ (b) $\frac{\pi}{2}$ (c) $(\mathbf{a} \times \mathbf{a}) \times (\mathbf{a} \times \mathbf{b})] =$ (b) $[\mathbf{a} \ \mathbf{b} \ \mathbf{c}]^3$ e coplanar. A unit vector c	formed by i (c) a is any vec (c) (b × c) = $\frac{\mathbf{b} + \sqrt{2}}{\sqrt{2}}$ (c) (c) (c) i is perpend	$+ a\mathbf{j} + \mathbf{k}, \mathbf{j} + a\mathbf{k}$ $\frac{1}{\sqrt{3}} \qquad (d)$ tor, then $(\mathbf{a} \cdot \mathbf{b})$ $\mathbf{c} \qquad (d)$ $\frac{\mathbf{c}}{2}, \text{ then the an}$ $\frac{3\pi}{4} \qquad (d)$ $[\mathbf{a} \ \mathbf{b} \ \mathbf{c}]^4 \ (d)$ licular to them [Roorkee Qu	and $a\mathbf{i} + \mathbf{k}$ becomes minimum is [IIT Screening 2003] $\sqrt{3}$ $\mathbf{b} + (\mathbf{a} \cdot \mathbf{c})\mathbf{c} + \frac{\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})}{ \mathbf{b} \times \mathbf{c} } (\mathbf{b} \times \mathbf{c}) =$ [IIT 1996] o agle between \mathbf{a} and \mathbf{b} is [IIT 1995] π None of these . If $(\mathbf{a} \times \mathbf{b}) \times (\mathbf{c} \times \mathbf{d}) = \frac{1}{6}\mathbf{i} - \frac{1}{3}\mathbf{j} + \frac{1}{3}\mathbf{k}$ and
29. 30. 31. 32.	The value of 'a' so that the (a) -3 If b and c are any two non- (a) a If a , b , c are non-coplanar (a) $\frac{\pi}{4}$ [(a × b)×(b × c)(b × c)×(c × (a) [a b c] ² Unit vectors a , b and c are the angle between a and b (a) $\frac{(i-2j+2k)}{3}$	volume of parallelopiped f (b) 3 collinear unit vectors and (b) b unit vectors such that $\mathbf{a} \times$ (b) $\frac{\pi}{2}$ $(\mathbf{a} \times \mathbf{a}) \times (\mathbf{a} \times \mathbf{b})] =$ (b) $[\mathbf{a} \ \mathbf{b} \ \mathbf{c}]^3$ the coplanar. A unit vector \mathbf{c} is 30°, then c is (b) $\frac{(2\mathbf{i} + \mathbf{j} - \mathbf{k})}{3}$	formed by i (c) a is any vec (c) (b × c) = $\frac{\mathbf{b} + \sqrt{2}}{\sqrt{2}}$ (c) (c) i is perpend (c)	$+ a\mathbf{j} + \mathbf{k}, \mathbf{j} + a\mathbf{k}$ $\frac{1}{\sqrt{3}} (\mathbf{d})$ tor, then $(\mathbf{a} \cdot \mathbf{b})$ $\mathbf{c} (\mathbf{d})$ $\mathbf{c} (\mathbf{d})$ $\mathbf{c} (\mathbf{d})$ $\frac{\mathbf{c}}{2}, \text{ then the and}$ $\frac{3\pi}{4} (\mathbf{d})$ $[\mathbf{a} \ \mathbf{b} \ \mathbf{c}]^4 (\mathbf{d})$ licular to them $[\mathbf{Roorkee Qu}]$ $\frac{(-\mathbf{i} + 2\mathbf{j} - 2\mathbf{k})}{3}$	and $a\mathbf{i} + \mathbf{k}$ becomes minimum is [IIT Screening 2003] $\sqrt{3}$ $\mathbf{b} + (\mathbf{a} \cdot \mathbf{c})\mathbf{c} + \frac{\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})}{ \mathbf{b} \times \mathbf{c} } (\mathbf{b} \times \mathbf{c}) =$ [IIT 1996] o IIIT 1996] o agle between a and b is [IIT 1995] π None of these \therefore If $(\mathbf{a} \times \mathbf{b}) \times (\mathbf{c} \times \mathbf{d}) = \frac{1}{6}\mathbf{i} - \frac{1}{3}\mathbf{j} + \frac{1}{3}\mathbf{k}$ and alifying 1998] $\frac{1}{2}$ (d) $\frac{(-\mathbf{i} + 2\mathbf{j} + \mathbf{k})}{3}$
29. 30. 31.	The value of 'a' so that the (a) -3 If b and c are any two non- (a) a If a , b , c are non-coplanar (a) $\frac{\pi}{4}$ [(a × b)×(b × c)(b × c)×(c × (a) [a b c] ² Unit vectors a , b and c are the angle between a and b (a) $\frac{(i-2j+2k)}{3}$ The radius of the circular s (a) 1	volume of parallelopiped f (b) 3 collinear unit vectors and (b) b unit vectors such that $\mathbf{a} \times$ (b) $\frac{\pi}{2}$ $(\mathbf{a} \cdot \mathbf{a}) \times (\mathbf{a} \times \mathbf{b})] =$ (b) $[\mathbf{a} \ \mathbf{b} \ \mathbf{c}]^3$ the coplanar. A unit vector \mathbf{c} is 30° , then \mathbf{c} is (b) $\frac{(2\mathbf{i} + \mathbf{j} - \mathbf{k})}{3}$ ection of the sphere $ \mathbf{r} = 5$ (b) 2	formed by i (c) a is any vec (c) (b × c) = $\frac{b + \sqrt{2}}{\sqrt{2}}$ (c) (c) i is perpend (c) 5 by the plan (c)	$+ a\mathbf{j} + \mathbf{k}, \mathbf{j} + a\mathbf{k}$ $\frac{1}{\sqrt{3}} \qquad (\mathbf{d})$ tor, then $(\mathbf{a} \cdot \mathbf{b})$ $\mathbf{c} \qquad (\mathbf{d})$ $\mathbf{c} \qquad (\mathbf{d})$ $\mathbf{c} \qquad (\mathbf{d})$ $\frac{\mathbf{c}}{2}, \text{ then the and}$ $\frac{3\pi}{4} \qquad (\mathbf{d})$ $[\mathbf{a} \ \mathbf{b} \ \mathbf{c}]^4 \ (\mathbf{d})$ licular to them $\frac{[\mathbf{Roorkee Qu}}{(-\mathbf{i} + 2\mathbf{j} - 2\mathbf{k})]}{3}$ here $\mathbf{r} \cdot (\mathbf{i} + \mathbf{j} + \mathbf{k}) =$ $3 \qquad (\mathbf{d})$	and $a\mathbf{i} + \mathbf{k}$ becomes minimum is [IIT Screening 2003] $\sqrt{3}$ $\mathbf{b} + (\mathbf{a} \cdot \mathbf{c})\mathbf{c} + \frac{\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})}{ \mathbf{b} \times \mathbf{c} } (\mathbf{b} \times \mathbf{c}) =$ [IIT 1996] 0 IIT 1996] 0 agle between \mathbf{a} and \mathbf{b} is [IIT 1995] π None of these . If $(\mathbf{a} \times \mathbf{b}) \times (\mathbf{c} \times \mathbf{d}) = \frac{1}{6}\mathbf{i} - \frac{1}{3}\mathbf{j} + \frac{1}{3}\mathbf{k}$ and alifying 1998] $\frac{1}{2}$ (d) $\frac{(-\mathbf{i} + 2\mathbf{j} + \mathbf{k})}{3}$ $= 3\sqrt{3}$ is [DCE 1999] 4
29. 30. 31. 32.	The value of 'a' so that the (a) -3 If b and c are any two non- (a) a If a , b , c are non-coplanar (a) $\frac{\pi}{4}$ [(a × b)×(b × c)(b × c)×(c × (a) [a b c] ² Unit vectors a , b and c are the angle between a and b (a) $\frac{(i-2j+2k)}{3}$ The radius of the circular s	volume of parallelopiped f (b) 3 collinear unit vectors and (b) b unit vectors such that $\mathbf{a} \times$ (b) $\frac{\pi}{2}$ $(\mathbf{a} \cdot \mathbf{a}) \times (\mathbf{a} \times \mathbf{b})] =$ (b) $[\mathbf{a} \ \mathbf{b} \ \mathbf{c}]^3$ the coplanar. A unit vector \mathbf{c} is 30° , then \mathbf{c} is (b) $\frac{(2\mathbf{i} + \mathbf{j} - \mathbf{k})}{3}$ ection of the sphere $ \mathbf{r} = 5$ (b) 2	formed by i (c) a is any vec (c) (b × c) = $\frac{b + \sqrt{2}}{\sqrt{2}}$ (c) (c) i is perpend (c) 5 by the plan (c)	$+ a\mathbf{j} + \mathbf{k}, \mathbf{j} + a\mathbf{k}$ $\frac{1}{\sqrt{3}} \qquad (\mathbf{d})$ tor, then $(\mathbf{a} \cdot \mathbf{b})$ $\mathbf{c} \qquad (\mathbf{d})$ $\mathbf{c} \qquad (\mathbf{d})$ $\mathbf{c} \qquad (\mathbf{d})$ $\frac{\mathbf{c}}{2}, \text{ then the and}$ $\frac{3\pi}{4} \qquad (\mathbf{d})$ $[\mathbf{a} \ \mathbf{b} \ \mathbf{c}]^4 \ (\mathbf{d})$ licular to them $\frac{[\mathbf{Roorkee Qu}}{(-\mathbf{i} + 2\mathbf{j} - 2\mathbf{k})]}{3}$ here $\mathbf{r} \cdot (\mathbf{i} + \mathbf{j} + \mathbf{k}) =$ $3 \qquad (\mathbf{d})$	and $a\mathbf{i} + \mathbf{k}$ becomes minimum is [IIT Screening 2003] $\sqrt{3}$ $\mathbf{b} + (\mathbf{a} \cdot \mathbf{c})\mathbf{c} + \frac{\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})}{ \mathbf{b} \times \mathbf{c} } (\mathbf{b} \times \mathbf{c}) =$ [IIT 1996] 0 IIT 1996] 0 agle between \mathbf{a} and \mathbf{b} is [IIT 1995] π None of these . If $(\mathbf{a} \times \mathbf{b}) \times (\mathbf{c} \times \mathbf{d}) = \frac{1}{6}\mathbf{i} - \frac{1}{3}\mathbf{j} + \frac{1}{3}\mathbf{k}$ and alifying 1998] $\frac{1}{2}$ (d) $\frac{(-\mathbf{i} + 2\mathbf{j} + \mathbf{k})}{3}$ $= 3\sqrt{3}$ is [DCE 1999] 4

35. The vector **c** directed along the internal bisector of the angle between the vectors $\mathbf{a} = 7\mathbf{i} - 4\mathbf{j} - 4\mathbf{k}$ and $\mathbf{b} = -2\mathbf{i} - \mathbf{j} + 2\mathbf{k}$ with $|\mathbf{c}| = 5\sqrt{6}$, is (b) $\frac{5}{3}(5\mathbf{i}+5\mathbf{j}+2\mathbf{k})$ (c) $\frac{5}{3}(\mathbf{i}+7\mathbf{j}+2\mathbf{k})$ (d) $\frac{5}{3}(-5\mathbf{i}+5\mathbf{j}+2\mathbf{k})$ (a) $\frac{5}{2}(i-7j+2k)$ The distance of the point $B(\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$ from the line which is passing through $A(4\mathbf{i} + 2\mathbf{j} + 2\mathbf{k})$ and which is parallel to 36. the vector $\vec{C} = 2\mathbf{i} + 3\mathbf{j} + 6\mathbf{k}$ is [Roorkee 1993] (a) 10 (b) √10 (d) None of these (c) 100 37. Let **a**, **b**, **c** are three non-coplanar vectors such that $r_1 = a - b + c, r_2 = b + c - a, r_3 = c + a + b,$ $\mathbf{r} = 2\mathbf{a} - 3\mathbf{b} + 4\mathbf{c}$. If $\mathbf{r} = \lambda_1 \mathbf{r}_1 + \lambda_2 \mathbf{r}_2 + \lambda_3 \mathbf{r}_3$, then (a) $\lambda_1 = 7$ (b) $\lambda_1 + \lambda_3 = 3$ (c) $\lambda_1 + \lambda_2 + \lambda_3 = 4 \quad (d)$ $\lambda_3 + \lambda_2 = 2$ Let $\mathbf{a} = 2\mathbf{i} + \mathbf{j} + \mathbf{k}$, $\mathbf{b} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$ and a unit vector **c** be coplanar. If **c** is perpendicular to **a**, then **c** = 38. [IIT 1999; Pb. CET 2003; DCE 2005] (b) $\frac{1}{\sqrt{3}}(-i - j - k)$ (c) $\frac{1}{\sqrt{5}}(i - 2j)$ (d) $\frac{1}{\sqrt{3}}(\mathbf{i}-\mathbf{j}-\mathbf{k})$ (a) $\frac{1}{\sqrt{2}}(-j+k)$ 39. Let p, q, r be three mutually perpendicular vectors of the same magnitude. If a vector x satisfies equation $\mathbf{p} \times \{(\mathbf{x} - \mathbf{q}) \times \mathbf{p}\} + \mathbf{q} \times \{(\mathbf{x} - \mathbf{r}) \times \mathbf{q}\} + \mathbf{r} \times \{(\mathbf{x} - \mathbf{p}) \times \mathbf{r}\} = 0$, then **x** is given by [IIT 1997 Cancelled] (a) $\frac{1}{2}(\mathbf{p}+\mathbf{q}-2\mathbf{r})$ (b) $\frac{1}{2}(\mathbf{p}+\mathbf{q}+\mathbf{r})$ (c) $\frac{1}{3}(\mathbf{p}+\mathbf{q}+\mathbf{r})$ (d) $\frac{1}{3}(2\mathbf{p}+\mathbf{q}-\mathbf{r})$ **40.** The point of intersection of $\mathbf{r} \times \mathbf{a} = \mathbf{b} \times \mathbf{a}$ and $\mathbf{r} \times \mathbf{b} = \mathbf{a} \times \mathbf{b}$, where $\mathbf{a} = \mathbf{i} + \mathbf{j}$ and $\mathbf{b} = 2\mathbf{i} - \mathbf{k}$ is [Orissa JEE 2004] (b) 3**i** – **k** 3i + 2j + k(a) 3i + j - k(d) None of these (c)

Que from Compt. Exams

1	С	2	b	3	b	4	С	5	b
6	b	7	е	8	b	9	d	10	b
11	b	12	d	13	С	14	d	15	a,c
16	b	17	b	18	d	19	b	20	а
21	а	22	С	23	а	24	d	25	С
26	b	27	с	28	с	29	а	30	С
31	С	32	a,c	33	d	34	С	35	а
36	b	37	b,c	38	а	39	b	40	а

for 39 Yrs. Que. of IIT-JEE & 15 Yrs. Que. of AIEEE we have distributed already a book