
 jfor /edco/leZ ztsk I netf hj. MMalthegkt

STUDY PACKAGE

Subject: Mathematics

Topic : Permutation and Combination

Available Online : www.MathsBySuhag.com

Index

1. Theory
2. Short Revision
3. Exercise (Ex. $1+5=6$)
4. Assertion \& Reason
5. Que. from Compt. Exams
6. 39 Yrs. Que. from IIT-J EE(Advanced)
7. 15 Yrs. Que. from AIEEE (J EE Main)

Student's Name : \qquad
Class
Roll No.

Address : Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal盆: 0903903 7779, 98930 58881, WhatsApp 9009260559 www.TekoClasses.com www.MathsBySuhag.com

Get Solution of These Packages_\& Learn by Video Tutorials_on www.MathsBySuhag.com

 Permutation and Combination
1.

Permutations are arrangements and combinations are selections. In this chapter we discuss the methods of counting of arrangements and selections. The basic results and formulas are as follows:

Fundamental Principle of Counting :

(i) Principle of Multiplication: if an event can occur in ' m ' different ways, following which another event can occur in ' n ' different ways, then total number of different ways of simultaneous occurrence of both the events in a definite order is $m \times n$.
(ii) Principle of Addition:If an event can occur in ' m ' different ways, and another event can occur in ' n ' different ways, then exactly one of the events can happen in $m+n$ ways.
Example \#1 There are 8 buses running from Kota to Jaipur and 10 buses running from Jaipur to Delhi. In how many ways a person can travel from Kota to Delhi via Jaipur by bus.
Solution. Let E_{1} be the event of travelling from Kota to Jaipur \& E_{2} be the event of travelling from Jaipur to Delhi by the person.
E_{1} can happen in 8 ways and E_{2} can happen in 10 ways.
Since both the events E_{1} and E_{2}^{2} are to be happened in order, simultaneously, the number of ways = 8 $\times 10=80$.
Example \# 2 How many numbers between 10 and 10,000 can be formed by using the digits 1, 2, 3, 4, 5 if (i) No digit is repeated in any number. (ii) Digits can be repeated.
(i) Number of two digit numbers $=5 \times 4=20$

Number of three digit numbers $=5 \times 4 \times 3=60$
Number of four digit numbers $=5 \times 4 \times 3 \times 2=120 \quad$ Total $=200$
(ii)

Number of two digit numbers $=5 \times 5=25$
Number of three digit numbers $=5 \times 5 \times 5=125$
Number of four digit numbers $=5 \times 5 \times 5 \times 5=625 \quad$ Total $=775$

Self Practice Problems :

1. How many 4 digit numbers are there, without repetition of digits, if each number is divisible by 5 .

Ans. 952
2. Using 6 different flags, how many different signals can be made by using atleast three flags, arranging
2. Arrangement: If ${ }^{n} P_{r}$ denotes the number of permutations of n different things, taking r at a time, then

$$
{ }^{n} P_{r}=n(n-1)(n-2) \ldots .(n-r+1)=\frac{n!}{(n-r)!}
$$

NOTE : (i) factorials of negative integers are not defined. (ii) $0!=1!=1$;
(iii) ${ }^{n} P_{n}=n!=n$ ($(n-1)!(2 n)!=2^{n} \cdot n![1.3 .5 .7 \ldots(2 n-1)]$

Example \# 3: How many numbers of three digits can be formed using the digits 1,2,3,4, 5 , without repetition of digits. How many of these are even.
Solution.: Three places are to be filled with 5 different objects.
Number of ways $={ }^{5} \mathrm{P}_{3}=5 \times 4 \times 3=60$
For the 2nd part, unit digit can be filled in two ways \& the remaining two digits can be filled in ${ }^{4} P_{2}$ ways.
Example \# 4: If all the letters of the word 'QUEST' are arranged in all possible ways and put in dictionary order, then find the rank of the given word.
Solution:: Number of words beginning with $\dot{E}={ }^{4} P_{4}=24$
Number of wards beginning with $\mathrm{QE}={ }^{3} P_{3}=6$
Number of words beginning with QS $=6$
Number of words beginning withQT $=6$.
Next word is 'QUEST' $\therefore \quad$ its rank is $24+6+6+6+1=43$.

Self Practice Problems :

Find the sum of ali four digit numbers (without repetition of digits) formed using the digits $1,2,3,4,5$. צ Ans. 399960
4. Find ' n ', if ${ }^{n-1} P_{2}: n^{n}=1: 9$. Ans. 9
5. Six horses take part in a race. In how many ways can these horses come in the first, second and third $\mathcal{D}^{\dot{D}}$ 3. Dlace, if a particular horse is among the three winners (Assume No Ties). Ans. 60 Circular Permutation : The number of circular permutations of n different things taken all at a time is; $(\mathrm{n}-1)$!. If clockwise \& anti-clockwise circular permutations are considered to be same, then it is $\frac{(\mathrm{n}-1)!}{2}$.
Note: Number of circular permutations of n things when p alike and the rest different taken all at a time distinguishing clockwise and anticlockwise arrangement is $\frac{(n-1)!}{\mathrm{p}!}$.
Example \# 5: In how many ways can we arrange 6 different flowers in a circle. In how many ways we can form a garland using these flowers.
Solution.: The number of circular arrangements of 6 different flowers $=(6-1)!=120$
When we form a garland, clockwise and anticlockwise arrangements are similar. Therefore, the number of ways of forming garland $=\frac{1}{2}(6-1)!=60$.
Example \# 6: In how many ways 6 persons can sit at a round table, if two of them prefer to sit together.
Solution.: Let $P_{1}, P_{2}, P_{3}, P_{4} P_{5}, P_{6}$ be the persons, where P_{1}, P_{2} want to sit together.

Self Practice Problems : 6. In how many ways the letters of the word 'MONDAY' can be written around a circle if the vowels are to be separated in any arrangement. Ans. 72
7. In how many ways we can form a garland using 3 different red flowers, 5 different yellow flowers and 4 different blue flowers, if flowers of same colour must be together. Ans. 17280.
4. Selection : If ${ }^{n} C_{r}$ denotes the number of combinations of n different things taken r at a time, then

$$
{ }^{n} C_{r}=\frac{n!}{r!(n-r)!}=\frac{{ }^{n} P_{r}}{r!} \text { where } r \leq n ; n \in N \text { and } r \in W \text {. }
$$

NOTE: (i) ${ }^{n} \mathrm{C}_{7}={ }^{\mathrm{n}} \mathrm{C}$
(ii) ${ }^{n} C_{r}+{ }^{n} C_{r}={ }^{n+1} C^{n}$
(iii) ${ }^{n} C_{r}=0$ if $r \notin\{0,1,2,3 \ldots \ldots . . n\}$

Example \# $\mathbf{7}$ Fiffēen players are sélected for a cricket match.
Successful People Replace the words like; "wish", "try" \& "should" with "I Will". Ineffective People don't.
(ii) In how many ways the playing 11 can be selected including a particular player.
(iii) In how many ways the playing 11 can be selected excluding two particular players.

Solution. (i) 11 players are to be selected from 15 Number of ways $={ }^{15} \mathrm{C}_{11}=1365$.
(ii) Since one player is already included, we have to select 10 from the remaining 14
(iii) Since two players are to be excluded, we have to select 11 from the remaining 13.

Number of ways $={ }^{13} \mathrm{C}_{1,1}=78$.
Example \# 8
Solution.
If ${ }^{49} \mathrm{C}$

Thus
or
$3 r-2=s 2 r+1 \quad \Rightarrow \quad r=3$
$3 r-2+2 r+1=49 \quad \Rightarrow \quad 5 r-1=49 \quad \Rightarrow \quad r=10$
$r=3,10$
Example \# 9 A regular polygon has 20 sides. How many triangles can be drawn by using the vertices, but not using the sides.
Solution. The first vertex can be selected in 20 ways. The remaining two are to be selected from 17 vertices so that they are not consecutive. This can be done in ${ }^{17} \mathrm{C}_{2}-16$ ways.

The total number of ways $=20 \times\left({ }^{17} \mathrm{C}_{2}-16\right)$
But in this method, each selection is repeated thrice.
Number of triangles $=\frac{20 \times\left({ }^{17} \mathrm{C}_{2}-16\right)}{3}=800$.
Example \# 1010 persons are sitting in a row. In how many ways we can select three of them if adjacent persons are not selected.
Solution. Let $P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}, P_{7}, P_{8}, P_{9}, P_{10}$ be the persons sitting in this order. If three are selected (noñ consecutive) then 7 are left out. Let PPPPPPP be the left out \& q, q, q be the selected. The number of ways in which these 3 q's can be placed into the 8 positions between the P's (including extremes) is the number ways of required selection. Thus number of ways $={ }^{8} \mathrm{C}_{3}=56$.
Example \# 11 In how many ways we can select 4^{3} letters from the letters of the word MISSISSIPPI.
IIII
SSSS
Number of ways of selecting 4 alike letters $={ }^{2} C_{1}=2$.
Number of ways of selecting 3 alike and 1 different letters $={ }^{2} \mathrm{C}_{1} \times{ }^{3} \mathrm{C}_{1}=6$
Number of ways of selecting 2 alike and 2 alike letters $={ }^{3} \mathrm{C}_{2}=3$
Number of ways of selecting 2 alike \& 2 different $={ }^{3} \mathrm{C}_{1} \times{ }^{3} \mathrm{C}_{2}=9$
Number of ways of selecting 4 different $={ }^{4} \mathrm{C}_{4}=1 \quad$ Total $=21$
Self Practice Problems :8. In how many ways 7 persons ${ }^{4}$ can be selected from among 5 Indian, 4 British \& 2 Chinese, if atleast two are to be selected from each country. Ans. 100
9.

10 points lie in a plane, of which 4 points are collinear. Barring these 4 points no three of the 10 points are collinear. How many quadrilaterals can be drawn. Ans. 185.
10. In how many ways 5 boys \& 5 girls can sit at a round table so that girls \& boys sit alternate. Ans. 2880
11. In how many ways 4 persons can occupy 10 chairs in a row, if no two sit on adjacent chairs. Ans. 840.
12. In how many ways we can select 3 letters of the word PROPORTION.

Ans. 36
5. The number of permutations of ' n ' things, taken all at a time, when ' p ' of them are similar \& of one type, q of them are similar \& of another type, ' r ' of them are similar \& of a third type \& the remaining $n-(p+q+r)$ are all different is $\frac{n!}{p!q!r!}$. However, if $3 n$ things are to be divided equally among three people then the number of ways $=\frac{(3 n)!}{(n!)^{3}}$.
Ex.14. 12 different toys are to be distributed to three children equally. In how many ways this can be done. Solution. The problem is to divide 12 different things into three different groups.

Number of ways $=\frac{12!}{4!4!4!}=34650$.
Example \# 15 In how many ways 10 persons can be divided into 5 pairs.
Solution. We have each group having 2 persons and the qualitative characteristic are same (Since there is no purpose mentioned or names for each pair).
Thus the number of ways $=\frac{10!}{(2!)^{5} 5!}=945$.
Self Practice Problems: 16. 9 persons enter a lift from ground floor of a building which stops in 10 floors (excluding ground floor). If is known that persons will leave the lift in groups of 2,3 , \& 4 in different floors. In how many ways this can happen. Ans. 907200
17. In how many ways one can make four equal heaps using a pack of 52 playing cards. Ans. $\frac{52!}{(13!)^{4} 4!}$
18. In how many ways 11 different books can be parcelled into four packets so that three of the packets contain
7. Selection of one or more objects
(a) Number of ways in which atleast one object be selected out of ' n ' distinct objects is
${ }^{n} C_{1}+{ }^{n} C_{2}+{ }^{n} C_{3}+\ldots \ldots \ldots \ldots+{ }^{n} C_{n}=2^{n}-1$
Ans. $\frac{11!}{(3!)^{4} 2}$
(b) Number of ways in which atleast one object may be selected out of ' p ' alike objects of one type ' q ' alike objects of second type and ' r ' alike of third type is
$(p+1)(q+1)(r+1)-1$
(c) Number of ways in which atleast one object may be selected from ' n ' objects where ' p ' alike of one type ' q ' alike of second type and ' r ' alike of third type and rest

$$
\begin{aligned}
& n-(p+q+r) \text { are different, is } \\
& (p+1)(q+1)(r+1) 2^{n-(p+q+r)}-1
\end{aligned}
$$

Example \# 16 There are 12 different books on a shelf. In how many ways we can select atleast one of them. Solution. We may select 1 book, 2 books,........ 12 books. The number of ways $={ }^{12} \mathrm{C}+{ }^{12} \mathrm{C}_{2}+\ldots \ldots .+{ }^{12} \mathrm{C}_{12}=2^{12}-1=4095$
Example \# 17 There are 12 fruits in a basket of which 5 are appples, 4 mangoes and 3 bananas (fruits of same
species are identical). How many ways are there to se
Solution. Let x be the number of apples being selected
be the number of mangoes being selected and
z be the number of bananas being selected.
Then $x=0,1,2,3,4,5$
$y=0,1,2,3$,
$z=0,1,2,3$
Total number of triplets (x, y, z) is $6 \times 5 \times 4=120$
Exclude (0, 0, 0) $\quad \therefore \quad$ Number of combinations $=120-1=119$.
Self Practice Problems
19. In a shelf there are 5 physics, 4 chemistry and 3 mathematics books. How many combinations are there if (i) books of same subject are different (ii) books of same subject are identical.
Ans.
(i) 4095
(ii) 119
20. From 5 apples, 4 mangoes \& 3 bananas in how many ways we can select atleast two fruits of each variety if (i) fruits of same species are identical (ii) fruits of same species are different. variety if (i) fruits of same species are
Ans. (i) $24 \quad$ (ii) 1144
8. Multinomial Theorem: Coefficient of x^{r} in expansion of $(1-x)^{-n}={ }^{n+r-1} C_{r}(n \in N)$

Number of ways in which it is possible to make a selection from $m+n+p=N$ things, where p are alike of one kind, m alike of second kind $\& n$ alike of third kind taken r at a time is given by coefficient of x^{r} in the expansion of
$\left(1+x+x^{2}+\ldots \ldots+x^{p}\right)\left(1+x+x^{2}+\ldots \ldots+x^{m}\right)\left(1+x+x^{2}+\ldots \ldots+x^{n}\right)$.
(i) For example the number of ways in which a selection of four letters can be made from the letters of the word PROPORTION is given by coefficient of x^{4} in
(ii) Method of fictious partition : $\quad\left(1+x+x^{2}+x^{3}\right)\left(1+x+x^{2}\right)(1+x)(1+x)(1+x)$.

Number of ways in which n identical things may be distributed among p persons if each person may receive none, one or more things is; ${ }^{n+p-1} \mathrm{C}_{n}$.
Example \# 18: Find the number of solutions of the equation $x^{n}+y+z=6$, where $x, y, z \in W$.
Solution. Number of solutions $=$ coefficient of x^{6} in $\left(1+x+x^{2}+\ldots \ldots x^{6}\right)^{3}$

$$
\begin{aligned}
& =\text { coefficient of } x^{6} \text { in }\left(1-x^{7}\right)^{3}(1-x)^{-3} \\
& =\text { coefficient of } x^{6} \text { in }(1-x)^{-3} \\
& =\binom{3+6-1}{6}={ }^{8} C_{6}=28 .
\end{aligned}
$$

$$
\begin{aligned}
& =\text { coefficient of } x^{6} \text { in }\left(1+x+\ldots \ldots+x^{6}\right)^{4} \\
& =\text { coefficient of } x^{6} \text { in }\left(1-x^{7}\right)^{4}(1-x)^{-4} \\
& =\text { coefficient } x^{6} \text { in }(1-x)^{-4} \quad=\binom{4+6-1}{6}=84 .
\end{aligned}
$$

Self Practice Problems:

21. Three distinguishable dice are rolled. In how many ways we can get a total 15. Ans. 10 .
22. In how many ways we can give 5 apples, 4 mangoes and 3 oranges (fruits of same species are similar) to three persons if each may receive none, one or more.

Ans. 3150
9. Let $N=p^{a} q^{b} \cdot r^{c} . \ldots .$. where $p, q, r \ldots \ldots$ are distinct primes $\& a, b, c \ldots .$. are natural numbers then :
(a) The total numbers of divisors of N including $1 \& N$ is $=(a+1)(b+1)(c+1) \ldots \ldots$.
(b) The sum of these divisors is =
$\left(p^{0}+p^{1}+p^{2}+\ldots+p^{1}\right)\left(q^{0}+q^{1}+q^{2}+\ldots+q^{b}\right)\left(r^{0}+r^{1}+r^{2}+\ldots .+r^{0}\right) \ldots \ldots .$.
(c) Number of ways in which N can be resolved as a product of two factors is

$$
=\begin{array}{ll}
\frac{1}{2}(a+1)(b+1)(c+1) \ldots & \text { if } \mathrm{N} \text { is not a perfect square } \\
\frac{1}{2}[(a+1)(b+1)(c+1) \ldots+1] \quad \text { if } \mathrm{N} \text { is a perfect square }
\end{array}
$$

(d) Number of ways in which a composite number N can be resolved into two factors which are relatively prime (or coprime) to each other is equal to 2^{n-1} where n is the number of different prime factors in N .
Example \# 20 Find the number of divisors of 1350. Also find the sum of all divisors.
$1350=2 \times 3^{3} \times 5^{2}$
Number of divisors $=(1+1)(3+1)(2+1)=24$
sum of divisors $=(1+2)\left(1+3+3^{2}+3^{3}\right)\left(1+5+5^{2}\right)=3720$.
Example \# 21
Solution. $\quad 8100=2^{2} \times 3^{4} \times 5^{2}$
Number of ways $=\frac{1}{2}((2+1)(4+1)(2+1)+1)=23$

Self Practice Problems :

23. How many divisors of 9000 are even but not divisible by 4. Also find the sum of all such divisors.

Ans. 12, 4056.
24. In how many ways the number 8100 can be written as product of two coprime factors. Ans. 4
10. Let there be ' n ' types of objects, with each type containing atleast r objects. Then the number of ways of arranging robjects in a row is $\mathrm{n}^{\text {r }}$.
Example \# 22 How many 3 digit numbers can be formed by using the digits $0,1,2,3,4,5$. In how many of Solution. We have to fill three places using 6 objects (repeatation allowed), 0 cannot be at $100^{\text {th }}$ place. The number of numbers $=180 . \quad 5^{5} . \quad \square^{6}$
Number of numbers in which
no digit is repeated $=100$

Number of numbers in which atleast one digit is repeated $=80-100=80$
Example \# 23 How many functions can be defined from a set A containing 5 elements to a set B having 3 elements. How many these are surjective functions.
Solution. Image of each element of A can be taken in 3 ways.
Number of functions from A to B $=3^{5}=243$.
Number of into functions from A to $B=2^{5}+2^{5}+2^{5}-3=93$.
Number of onto functions $=150$.
Self Practice Problems : 25. Find the sum of all three digit numbers those can be formed by using the digits. $0,1,2,3,4$.
Ans. 27200 .
צ
How many functions can be defined from a set A containing 4 elements to a set B containing 5 elements. How many of these are injective functions. Ans. 625, 120
27. How many of these are injective functions. Ans. $\begin{aligned} & \text { 625, } 120 \\ & \text { In how many ways } 5 \text { persons can enter into a auditorium having } 4 \text { entries. Ans. } 1024\end{aligned}$

11. Dearrangement :

Number of ways in which ' n ' letters can be put in ' n ' corresponding envelopes such that no letter goes to correct envelope is

$$
n!\left(1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!} \ldots \ldots \ldots \ldots+(-1)^{n} \frac{1}{n!}\right)
$$

Example \# 24 In how many ways we can put 5 writings into 5 corresponding envelopes so that no writing go to the corresponding envelope.
Solution. The problem is the number of dearragements of 5 digits.
This is equal to $5!\left(\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\frac{1}{5!}\right)=44$.
Example \# 25 Four slip of papers with the numbers 1, 2, 3, 4 written on them are put in a box. They are drawn one by one (without replacement) at random. In how many ways it can happen that the ordinal number of atleast one slip coincide with its own number.
Solution. Total number of ways $=4!=24$.
The number of ways in which ordinal number of any slip does not coincide with its own number is the number of dearrangements of 4 objects $=4!\left(\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}\right)=9$ Thus the required number of ways. $=24-9=15$

Self Practice Problems:

28. In a match column question, Column I contain 10 questions and Column II contain 10 answers written in some arbitrary order. In how many ways a student can answer this question so that exactly 6 of his matchings are correct. Ans. 1890
29. In how many ways we can put 5 letters into 5 corresponding envelopes so that atleast one letter go to wrong envelope.

Ans. 119

