Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
SHORT REVISION

DEFINITIONS :

1. PERMUTATION : Each of the arrangements in a definite order which can be made by taking some or all of a number of things is called a PERMUTATION.

ع 2. COMBINATION : Each of the groups or selections which can be made by taking some or all of a number of things without reference to the order of the things in each group is called a COMBINATION.
 FUNDAMENTAL PRINCIPLE OF COUNTING :
 If an event can occur in ' m ' different ways, following which another event can occur in ' n ' different ways, then the total number of different ways of simultaneous occurrence of both events in a definite order is $m \times n$. This can be extended to any number of events.

RESULTS: (i) A Useful Notation: $\mathrm{n}!=\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2) \ldots \ldots . .3 .2 .1 ; \mathrm{n}!=\mathrm{n} .(\mathrm{n}-1)$!
$0!=1!=1 ;(2 n)!=2^{\mathrm{n}} \cdot \mathrm{n}![1.3 \cdot 5 \cdot 7 \ldots(2 \mathrm{n}-1)]$ Note that factorials of negative integers are not defined.
(ii) If ${ }^{n} P_{r}$ denotes the number of permutations of n different things, taking r at a time, then ${ }^{n} P_{r}=n(n-1)(n-2) \ldots . .(n-r+1)=\frac{n!}{(n-r)!}$ Note that, ${ }^{n} P_{n}=n!$.
(iii) If ${ }^{n} C_{r}$ denotes the number of combinations of n different things taken r at a time, then ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=\frac{\mathrm{n}!}{\mathrm{r}!(\mathrm{n}-\mathrm{r})!}=\frac{{ }^{n} \mathrm{P}_{\mathrm{r}}}{\mathrm{r}!}$ where $\mathrm{r} \leq \mathrm{n} ; \mathrm{n} \in \mathrm{N}$ and $\mathrm{r} \in \mathrm{W}$.
(iv) The number of ways in which $(m+n)$ different things can be divided into two groups containing $m \& n$ things respectively is : $\frac{(m+n)!}{m!n!}$ If $m=n$, the groups are equal \& in this case the number of subdivision is $\frac{(2 n)!}{n!n!2!}$; for in $\underset{\sim}{\infty}$ any one way it is possible to interchange the two groups without obtaining a new distribution. However, if 2 n things \circ are to be divided equally between two persons then the number of ways $=\frac{(2 n)!}{n!n!}$.
(v) Number of ways in which $(m+n+p)$ different things can be divided into three groups containing m, n \& p things respectively is $\frac{(m+n+p)!}{m!n!p!}, m \neq n \neq p . \quad$ If $m=n=p$ then the number of groups $=\frac{(3 n)!}{n!n!n!3!}$. However, if $3 n$ things are to be divided equally among three people then the number of ways $=\frac{(3 n)!}{(n!)^{3}}$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
(d) \quad Number of ways in which a composite number N can be resolved into two factors which are relatively prime (or coprime) to each other is equal to 2^{n-1} where n is the number of different prime factors in N .
(xvi) Grid Problems and tree diagrams.

DEARRANGEMENT : Number of ways in which n letters can be placed in n directed letters so that no letter goes into its own envelope is $=\mathrm{n}!\left[1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}+\ldots \ldots \ldots . .+(-1)^{n} \frac{1}{n!}\right]$.
(xvii) Some times students find it difficult to decide whether a problem is on permutation or combination or both. Based on certain words / phrases occuring in the problem we can fairly decide its nature as per the following table :
PROBLEMS OF COMBINATIONS PROBLEMS OF PERMUTATIONS

- Selections, choose
- Distributed group is formed
- Committee
- Arrangements
- Standing in a line seated in a row
- problems on digits
- Geometrical problems
- Problems on letters from a word

EXERCISE-1

Q. 1 The straight lines $l_{1}, l_{2} \& l_{3}$ are parallel \& lie in the same plane. Atotal of m points are taken on the line l_{1}, n points \circ on $l_{2} \& \mathrm{k}$ points on l_{3}. How many maximum number of triangles are there whose vertices are at these points?
Q. 2 How many five digits numbers divisible by 3 can be formed using the digits $0,1,2,3,4,7$ and 8 if each digit is to be used atmost once.
Q. 3 There are 2 women participating in a chess tournament. Every participant played 2 games with the other participants. The number of games that the men played between themselves exceeded by 66 as compared to the number of games that the men played with the women. Find the number of participants \& the total numbers of games played in the tournament.
Q. 4 All the 7 digit numbers containing each of the digits $1,2,3,4,5,6,7$ exactly once, and not divisible by 5 are arranged in the increasing order. Find the $(2004)^{\text {th }}$ number in this list.
Q. 55 boys \& 4 girls sit in a straight line. Find the number of ways in which they can be seated if 2 girls are together \& the other 2 are also together but separate from the first 2 .
Q. 6 Acrew of an eight oar boat has to be chosen out of 11 men five of whom can row on stroke side only, four on the bow side only, and the remaining two on either side. How many different selections can be made?
Q. 7 An examination paper consists of 12 questions divided into parts A \& B.

Part-A contains 7 questions \& Part-B contains 5 questions. A candidate is required to attempt 8 questions selecting atleast 3 from each part. In how many maximum ways can the candidate select the questions?
Q. 8 In how many ways can a team of 6 horses be selected out of a stud of 16 , so that there shall always be 3 out of A BCA' B' C', but never AA', B B' or CC' together.
Q. 9 During a draw of lottery, tickets bearing numbers $1,2,3, \ldots \ldots, 40,6$ tickets are drawn out \& thenarranged in the $\frac{8}{\infty}$ descending order of their numbers. In how many ways, it is possible to have $4^{\text {th }}$ ticket bearing number 25 .
Q. 10 Find the number of distinct natural numbers upto a maximum of 4 digits and divisible by 5 , which canbe formed $\overline{\bar{\circ}}$ with the digits $0,1,2,3,4,5,6,7,8,9$ each digit not occuring more than once in each number.
Q. 11 The Indian cricket team witheleven players, the team manager, the physiotherapist and two umpires are to travel from the hotel where they are staying to the stadium where the test match is to be played. Four of them residing in the same town own cars, each a four seater which they will drive themselves. The bus which was to pick themup failed to arrive in time after leaving the opposite team at the stadium. In how many ways can they be seated in the cars ? Inhow many ways can they travel by these cars so as to reach intime, if the seating arrangement in each car is immaterial and all the cars reach the stadium by the same route.
Q. 12 There are n straight lines in a plane, no 2 of which parallel, \& no 3 pass through the same point. Their point of intersection are joined. Show that the number of fresh lines thus introduced is $\frac{\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2)(\mathrm{n}-3)}{8}$.
Q. 13 In how many ways can you divide a pack of 52 cards equally among 4 players. In how many ways the cards can \mathcal{A}
Q. 14 Afirm of Chartered Accountants in Bombay has to send 10 clerks to 5 different companies, two clerks in each. Two of the companies are in Bombay and the others are outside. Two of the clerks prefer to work in Bombay while three others prefer to work outside. In how many ways can the assignment be made if the preferences are to be satisfied.
Q. 15 A train going from Cambridge to London stops at nine intermediate stations. 6 persons enter the train during the journey with 6 different tickets of the same class. How many different sets of ticket may they have had?
Q. 16 Prove that if each of m points in one straight line be joined to each of n in another by straight lines terminated by the points, then excluding the given points, the lines will intersect $\frac{1}{m n}(\mathrm{~m}-1)(\mathrm{n}-1)$ times.
Q. 17 How many arrangements each consisting of 2 vowels \& 2 consonants can be made out of the letters of the word 'DEVASTATION'?
Q. 18 Find the number of words each consisting of 3 consonants \& 3 vowels that can be formed from the letters of the word "Circumference". In how many of these c's will be together.
Q. 19 There are 5 white, 4 yellow, 3 green, 2 blue \& 1 red ball. The balls are all identical except for colour. These are to be arranged in a line in 5 places. Find the number of distinct arrangements.
Q. 20 How many 4 digit numbers are there which contains not more than 2 different digits?
Q. 21 In how many ways 8 persons can be seated on a round table
(a) If two of them (say A and B) must not sit in adjacent seats.
(b) If 4 of the persons are men and 4 ladies and if no two men are to be in adjacent seats.

$$
\begin{aligned}
& \text { Q. } 22 \text { (i) If 'n' things are arranged in circular order, then show that the number of ways of selecting four of the things } \\
& \text { no two of which are consecutive is } \frac{n(n-5)(n-6)(n-7)}{4!} \\
& \text { (ii) If the ' } n \text { ' things are arranged in a row, then show that the number of such sets of four is } \frac{(n-3)(n-4)(n-5)(n-6)}{4!}
\end{aligned}
$$

Q.23(a)How many divisors are there of the number $\mathrm{x}=21600$. Find also the sum of these divisors.
(b)In how many ways the number 7056 can be resolved as a product of 2 factors.
(c)Find the number of ways in which the number 300300 can be split into 2 factors which are relatively prime.
Q. 24 How many ten digits whole number satisfy the following property they have 2 and 5 as digits, and there are no ~ consecutive 2's in the number (i.e. any two 2's are separated by at least one 5).
Q. 25 How many different ways can 15 Candy bars be distributed between Ram, Shyam, Ghanshyam and Balram, if Ram can not have more than 5 candy bars and Shyam must have at least two. Assume all Candy bars to be alike. Q. 26 Find the number of distinct throws which can be thrown with 'n' six faced normal dice which are indistinguishable ${ }_{\mathrm{D}}^{2}$
Q. 27 How many integers between 1000 and 9999 have exactly one pair of equal digit such as 4049 or 9902 but not 4449 or 4040?
Q. 28 In a certain town the streets are arranged like the lines of a chess board. There are 6 streets running north \& south ∞

Q Q .29
and 10 running east \& west. Find the number of ways in which a man
(i) Prove that: ${ }^{n}{ }^{n}={ }^{n-1} \mathrm{n}^{n}+\mathrm{r}^{\mathrm{n}-1} \mathrm{P}_{\mathrm{r}-1}$
(ii) If ${ }^{20} \mathrm{C}_{\mathrm{r}+2}={ }^{20} \mathrm{C}_{2 \mathrm{r}-3}$ find ${ }^{12} \mathrm{C}_{\mathrm{r}}$
(iv)

Find the ratio ${ }^{26} \mathrm{C}_{\mathrm{p}}$ to ${ }^{2{ }^{25}} \mathrm{C}_{\mathrm{r}}$ when ${ }^{\mathrm{r}-1}$ ach of the
Prove that ${ }^{n-1} \mathrm{C}_{3}+{ }^{\mathrm{n-1}} \mathrm{C}_{4}>{ }^{\mathrm{n}} \mathrm{C}_{3}$ if $\mathrm{n}>7$.
(v) Find r if ${ }^{15} \mathrm{C}={ }^{15} \mathrm{C}$.
Q. 30 There are 20 books on Algebra \& Calculus in our library. Prove that the greatest number of selections each of ${ }^{\circ}$ which consists of 5 books on each topic is possible only when there are 10 books on each topic in the library.

EXERCISE-2
Q. 1 Find the number of ways in which 3 distinct numbers can be selected from the set $\left\{3^{1}, 3^{2}, 3^{3}, \ldots \ldots . .3^{100}, 3^{101}\right\}$ so that they form a G.P.
Q. $2 \quad$ Let $\mathrm{n} \& \mathrm{k}$ be positive integers such that $\mathrm{n} \geq \frac{\mathrm{k}(\mathrm{k}+1)}{2}$. Find the number of solutions
$\left(x_{1}, x_{2}, \ldots, x_{k}\right), x_{1} \geq 1, x_{2} \geq 2, \ldots, x_{k} \geq k$, all integers, satisfying $x_{1}+x_{2}+\ldots+x_{k}=n$.
Q. 3 There are counters available in 7 different colours. Counters are all alike except for the colour and they are atleast $\frac{\square}{\square}$ ten of each colour. Find the number of ways in which an arrangement of 10 counters can be made. How many of $\bar{\pi}$ these will have counters of each colour.
Q. 4 For each positive integer k, let S_{k} denote the increasing arithmetic sequence of integers whose first term is 1 and whose common difference is k . For example, S_{3} is the sequence $1,4,7,10 \ldots .$. .Find the number of values of k for which S_{k} contain the term 361.
Q. 5 Find the number of 7 lettered words each consisting of 3 vowels and 4 consonants which can be formedusing the letters of the word "DIFFERENTIATION".
Q. 6 A shop sells 6 different flavours of ice-cream. In how many ways can a customer choose 4 ice-cream cones if $\begin{array}{ll}\text { (i) they are all of different flavours } & \text { (ii) they are non necessarily of different flavours } \\ \text { (iii) they contain only } 3 \text { different flavours } & \text { (iv) } \\ \text { they contain only } 2 \text { or } 3 \text { different flavours? }\end{array}$
Q. 76 white \& 6 black balls of the same size are distributed among 10 different urns. Balls are alike except for the colour \& each urn can hold any number of balls. Find the number of different distribution of the balls so that there \mathcal{I} is atleast 1 ball in each urn.
Q. 8 There are 2 n guests at a dinner party. Supposing that the master and mistress of the house have fixed seats opposite one another, and that there are two specified guests who must not be placed next to one another. Show that the number of ways in which the company can be placed is $(2 n-2)!.\left(4 n^{2}-6 n+4\right)$.
Q. 9 Each of 3 committees has 1 vacancy which is to be filled from a group of 6 people. Find the number of ways the 3 vacancies can be filled if ;
(i) Each person can serve on atmost 1 committee.
(ii) There is no restriction on the number of committees on which a person can serve.
(iii) Each person can serve on atmost 2 committees.
Q. 10 How many 15 letter arrangements of 5 A's, 5 B's and 5 C's have no A's in the first 5 letters, no B's in the next 5
Q. 115 balls are to be placed in 3 boxes. Each box can hold all 5 balls. In how many different ways can we place the balls so that no box remains empty if,
(i) balls \& boxes are different
(ii) balls are identical but boxes are different
(iii) balls are different but boxes are identical
(iv) balls as well as boxes are identical
(v) balls as well as boxes are identical but boxes are kept in a row.
Q. 12 In how many other ways can the letters of the word MULTIPLE be arranged;
(i) without changing the order of the vowels (ii) keeping the position of each vowel fixed \&
(iii) without changing the relative order/position of vowels \& consonants.
Q. 13 Find the number of ways in which the number 30 can be partitioned into three unequal parts, each part being a natural number. What this number would be if equal parts are also included.
Q. 14 In an election for the managing committee of a reputed club, the number of candidates contesting elections exceeds the number of members to be elected by $r(r>0)$. If a voter can vote in 967 different ways to elect the managing committee by voting atleast 1 of them \& can vote in 55 different ways to elect ($\mathrm{r}-1$) candidates by

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com

voting in the same manner. Find the number of candidates contesting the elections \& the number of candidates losing the elections.
Q. 15 Find the number of three digits numbers from 100 to 999 inclusive which have any one digit that is the average of the other two.
Q. 16 Prove by combinatorial argument that :
(a) ${ }_{n+1} C_{r}={ }^{n} C_{r}+{ }^{n} C_{r-1}$ (b) ${ }^{n}+{ }^{m} c_{r}={ }^{n} c_{0} \cdot{ }^{m} c_{r}+{ }^{n} c_{1} \cdot{ }^{m} c_{r}-1+{ }^{n} c_{2} \cdot{ }^{m} c_{r-2}+\ldots \ldots .+{ }^{n} c_{r} \cdot{ }^{m} c_{0}$.

A man has 3 friends. In how many ways he can invite one friend everyday for dinner on 6 successive nights so that no friend is invited more than 3 times.
Q. $18 \quad 12$ persons are to be seated at a square table, three on each side. 2 persons wish to sit on the north side and two wish to sit on the east side. One other person insists on occupying the middle seat (which may be on any side). Find the number of ways they can be seated.
Q. 19 There are 15 rowing clubs; two of the clubs have each 3 boats on the river; five others have each 2 and the remaining eight have each 1 ; find the number of ways in which a list can be formed of the order of the 24 boats, observing that the second boat of a club cannot be above the first and the third above the second. How many ways are there in which a boat of the club having single boat on the river is at the third place in the list formed above?
Q. 2025 passengers arrive at a railway station \& proceed to the neighbouring village. At the station there are 2 coaches $\stackrel{\pi}{2}$ accommodating 4 each \& 3 carts accommodating 3 each. Find the number of ways in which they can proceed to the village assuming that the conveyances are always fully occupied \& that the conveyances are all distinguishable from each other.
Q. 21 An 8 oared boat is to be manned by a crew chosen from 14 men of which 4 can only steer but can not row \& the ${ }_{1}^{\infty} \underset{\sim}{\infty} 0$
rest can row but cannot steer. Of those who can row, 2 can row on the bow side. In how many ways canthe crew
rest can row but cannot steer. Of those who can row, 2 can row on the bow side. In how many ways canthe crew
Q. 22 How many 6 digits odd numbers greater than 60,0000 can be formed from the digits $5,6,7,8,9,0$ if (in) $)_{\infty}^{\infty}$
Q. 23 Find the sum of all numbers greater than 10000 formed by using the digits $0,1,2,4,5$ no digit being repeated
Q. 24 The members of a chess club took part in a round robin competition in which each plays every one else once. All $\stackrel{\wedge}{\wedge}$ members scored the same number of points, except four juniors whose total score were 17.5 . How manymembers m were there in the club? Assume that for each win a player scores 1 point, for draw $1 / 2$ point and zero for losing. O
Q. 25 There are 3 cars of different make available to transport 3 girsls and 5 boys on a field trip. Eachcar can hold up to m
(b) the numbers of ways in which they can be accomodated if 2 or 3 girls are assigned to one of the cars.

In both the cars internal arrangement of childrent inside the car is to be considered as immaterial.
Q. 26 Six faces of an ordinary cubical die marked with alphabets A, B, C, D, E and F is thrown n times and the list of n alphabets showing up are noted. Find the total number of ways in whichamong the alphabets A, B, C, D, E and $\frac{\square}{\square}$ F only three of them appear in the list.
Q. 27 Find the number of integer betwen 1 and 10000 with at least one 8 and at least one 9 as digits.
Q. 28 The number of combinations n together of 3 n letters of which n are'a' and n are' b^{\prime} and the rest unlike is $(n+2) .2^{n-1}$.
Q. 29 In Indo-Pak one day International cricket match at Sharjah, India needs 14 runs to win just before the start of the final over. Find the number of ways in which India just manages to win the match (i.e. scores exactly 14 runs), Assuming that all the runs are made off the bat \& the batsman can not score more than 4 runs off any ball.
 $\frac{1}{3}(m+1)\left(2 m^{2}+4 m+3\right)$.

EXERCISE-3

Q. 1 Find the total number of ways of selecting five letters from the letters of the word INDEPENDENT.[REE '97, 6] [

Q. 2 Select the correct alternative(s).

(i) Number of divisors of the form $4 n+2(n \geq 0)$ of the integer 240 is
(A) 4
(B) 8
(C) 10
(D) 3
[JEE '98, 2 + 2]

An n-digit number is a positive number with exactly 'n' digits. Nine hundred distinct n-digit numbers are to be formed using only the three digits $2,5 \& 7$. The smallest value of n for which this is possible is :
(A) 6
(B) 7
(C) 8
(D) 9

parallel lines as shown in the diagram, then the number of rectangles possible with odd side lengths is
(A) $(\mathrm{m}+\mathrm{n}+1)^{2}$
(B) $4^{\mathrm{m}+\mathrm{n}-1}$
(C) $\mathrm{m}^{2} \mathrm{n}^{2}$
(D) $\mathrm{mn}(\mathrm{m}+1)(\mathrm{n}+1)$

[JEE 2005 (Screening), 3]
Q. 9 If r, s, t are prime numbers and p, q are the positive integers such that their LCM of p, q is is $\mathrm{r}^{2} \mathrm{t}^{4} \mathrm{~s}^{2}$, then the numbers of ordered pair of (p, q) is
(A) 252
(B) 254
(C) 225
(D) 224
[JEE 2006, 3]

EXERCISE-4

Part : (A) Only one correct option

1. There are 2 identical white balls, 3 identical red balls and 4 green balls of different shades. The number of ways in which they can be arranged in a row so that atleast one ball is separated from the balls of the same colour, is:
(A) 6 (7!-4!)
(B) $7(6!-4$!)
(C) 8 ! -5 !
(D) none
2. The number of permutations that can be formed by arranging all the letters of the word 'NINETEEN' in which no two E's occur together is
(A) $\frac{8!}{3!3!}$
(B) $\frac{5!}{3!\times{ }^{6} \mathrm{C}_{2}}$
(C) $\frac{5!}{3!} \times{ }^{6} \mathrm{C}_{3}$
(D) $\frac{8!}{5!} \times{ }^{6} \mathrm{C}_{3}$.
3. The number of ways in which n different things can be given to r persons when there is no restriction as to the number of things each may receive is:
(A) ${ }^{n} C$
(B) ${ }^{\mathrm{n}} \mathrm{P}$
(C) n^{r}
(D) r^{n}
4. The number of divisors of $a^{p} b^{q} c^{r} d^{s}$ where a, b, c, d are primes $\& p, q, r, s \in N$, exc
d are primes \& $p, q, r, s \in N$, excluding
(B) $(p+1)(q+1)(r+1)(s+1)-4$
(D) $(p+1)(q+1)(r+1)(s+1)-2$
5. The number of ordered triplets of positive integers which are solutions of the equation $x+y+z=100$ is:
(A) 3125
(B) 5081
(C) 6005
(D) 4851
6. \quad Number of ways in which 7 people can occupy six seats, 3 seats on each side in a first class railway compartment \xlongequal{m} if two specified persons are to be always included and occupy adjacent seats on the same side, is (k). 5 ! then o
k has the value equal to:
(A) 2
(B) 4
(C) 8
(D) none
7. Number of different words that can be formed using all the letters of the word "DEEPMALA" if two vowels are together and the other two are also together but separated from the first two is:
(A) 960
(B) 1200
(C) 2160
(D) 1440
8. Six persons A, B, C, D, E and F are to be seated at a circular table. The number of ways this can be done if A must have either B or C on his right and B must have either C or D on his right is:
(A) 36
(B) 12
(C) 24
(D) 18
9. The number of ways in which 15 apples $\& 10$ oranges can be distributed among three persons, each receiving
none, one or more is:
(A) 5670
(B) 7200
(C) 8976
(D) none of these
10. The number of permutations which can be formed out of the letters of the word "SERIES" taking three letters
11. Seven different coins are to be divided amongst three persons. If no two of the persons receive the same number of coins but each receives atleast one coin \& none is left over, then the number of ways in which the division may
be made is:
(A) 420
(B) 630
(C) 710
(D) none
12. The streets of a city are arranged like the lines of a chess board. There are m streets running North to South \& ' n ' streets running East to West. The number of ways in which a man can travel from NW to SE corner going the shortest possible distance is:
(A) $\sqrt{\mathrm{m}^{2}+\mathrm{n}^{2}}$
(B) $\sqrt{(\mathrm{m}-1)^{2} \cdot(\mathrm{n}-1)^{2}}$
(C) $\frac{(m+n)!}{m!\cdot n!}$
(D) $\frac{(m+n-2)!}{(m-1)!\cdot(n-1)!}$

In a conference 10 speakers are present. If S_{1} wants to speak before $S_{1} \dot{\&} S_{2}$ wants to speak after S_{3}, then the number of ways all the 10 speakers can give their speeches with the above restriction if the remaining seeven speakers have no objection to speak at any number is:
(A) ${ }^{10} \mathrm{C}_{3}$
(B) ${ }^{10} P_{8}$
(C) ${ }^{10} P_{3}$
(D) $\frac{10!}{3}$
14. Two variants of a test paper are distributed among 12 students. Number of ways of seating of the students in two \sum rows so that the students sitting side by side do not have identical papers \& those sitting in the same column have the same paper is:
(A) $\frac{12!}{6!6!}$
(B) $\frac{(12)!}{2^{5} \cdot 6!}$
(C) $(6!)^{2} \cdot 2$
(D) $12!\times 2$
15. Sum of all the numbers that can be formed using all the digits 2, 3, 3, 4, 4, 4 is:
(A) 22222200
(B) 11111100
(C) 55555500
(D) 20333280
16. There are m apples and n oranges to be placed in a line such that the two extreme fruits being both oranges. Let ${ }^{-}$ P denotes the number of arrangements if the fruits of the same species are different and Q the corresponding figure when the fruits of the same species are alike, then the ratio P / Q has the value equal to:
(A) ${ }^{n} P_{2} \cdot{ }^{m} P_{m} \cdot(n-2)$!
(B) ${ }^{m}{ }^{2}{ }_{2}{ }^{n} P^{n} \cdot(n-2)!$
(C) ${ }^{n} P_{2} \cdot{ }^{n} P_{n \cdot}(m-2)$!

(A) 8550
(B) 5382
(C) 6062
(D) 8055
18. Number of ways in which a pack of 52 playing cards be distributed equally among four players so that each may have the Ace, King, Queen and Jack of the same suit is:
(A) $\frac{36!}{(9!)^{4}}$
(B) $\frac{36!.4!}{(9!)^{4}}$
(C) $\frac{36!}{(9!)^{4} \cdot 4!}$
(D) none
19. A five letter word is to be formed such that the letters appearing in the odd numbered positions are taken from the

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
letters which appear without repetition in the word "MATHEMATICS". Further the letters appearing in the even numbered positions are taken from the letters which appear with repetition in the same word "MATHEMATICS".
The number of ways in which the five letter word can be formed is:
(A) 720
(B) 540
(C) 360
(D) none
20. Number of ways of selecting 5 coins from coins three each of Rs. 1, Rs. 2 and Rs. 5 if coins of the same
(A) 9
(B) 12
(C) 21
(D) none
(c)
the clockwise and anticlockwise arrangement is:
(A) 60
(B) 40
(C) 20
(D) none of these
22.

If r, s, t are prime numbers and p, q are the positive integers such that the LCM of p, q is $r^{2} t^{4} s^{2}$, then the number of ordered pair (p, q) is
(A) 252
(B) 254
(C) 225
(D) 224
[IIT-2006]
Part : (B) May have more than one options correct
23.
(A) 8^{6}
(B) 9
(C) 10
(D) 11
24. In an examination, a candidate is required to pass in all the four subjects he is studying. The number of ways in which he can fail is
(A) ${ }^{4} \mathrm{P}_{1}+{ }^{4} \mathrm{P}_{2}+{ }^{4} \mathrm{P}_{3}+{ }^{4} \mathrm{P}$
(B) $4^{4}-1$
(C) $2^{4}-1$
(D) ${ }^{4} \mathrm{C}_{1}+{ }^{4} \mathrm{C}_{2}+{ }^{4} \mathrm{C}_{3}+{ }^{4} \mathrm{C}_{4}$
25. The kindergªrten teacher has 25 kids in her class. She takes 5 of them at a time, to zoological gar ${ }^{3}$ rden ${ }^{4}$ as often as she can, without taking the same 5 kids more than once. Then the number of visits, the teacher makes to the
garden exceeds that of a kid by:
(A) ${ }^{25} \mathrm{C}_{5}-{ }^{24} \mathrm{C}_{4}$
(B) ${ }^{24} \mathrm{C}_{5}$
(C) ${ }^{25} \mathrm{C}_{5}-{ }^{24} \mathrm{C}_{5}$
(D) ${ }^{24} \mathrm{C}_{4}$
26. The number of ways of arranging the letters $A A A A A, B_{5}^{5} B, C^{5} C C, D, E E \& F$ in at row if the letter C are separated from one another is:
(A) ${ }^{13} \mathrm{C}_{3} \cdot \frac{12!}{5!3!2!}$
(B) $\frac{13!}{5!3!3!2!}$
(C) $\frac{14!}{3!3!2!}$
(D) $11 . \frac{13!}{6!}$

27 . There are 10 points P be determined by these points which do not pass through the points P_{1} or $P_{\text {is }}$ is:
(A) ${ }^{10} \mathrm{C}_{2}-2 .{ }^{9} \mathrm{C}_{1}$
(B) 27
(C) ${ }^{8} \mathrm{C}_{2}$
${ }^{1}$ (D) ${ }^{10}{ }^{2} \mathrm{C}_{2}-2 .{ }^{9} \mathrm{C}_{1}+1$
28. Numberr of quadrilaterals which can be constructed by joining the vertices of a convex polygon of 20 sides if none of the side of the polygon is also the side of the quadrilateral is:
(A) ${ }^{17} \mathrm{C}_{4}-{ }^{15} \mathrm{C}_{2}$
(B) $\frac{{ }^{15} \mathrm{C}_{3} \cdot 20}{4}$
(C) 2275
(D) 2125 arranged in a row so that the two balls of particular colour (say red \& white) may never come together is:
30. A man is dealt a poker hand (consisting of 5 cards) from an ordinary pack of 52 playing cards. The number of ways in which he can be dealt a "straight" (a straight is five consecutive values not of the same suit, eg. $\{$ Ace, 2 , $3,4,5\},\{2,3,4,5,6\} .$.
(A) $10\left(4^{5}-4\right)$
(B) $4!2^{10}$
\& $\{10, \mathrm{~J}, \mathrm{~K}$, Ace $\}$) is

Number of ways in which 3 numbers in A.P. can be selected from $1,2,3, \ldots \ldots . n$ is:
(A) $\left(\frac{n-1}{2}\right)^{2}$ if n is even
$\begin{array}{ll}\text { (B) } \frac{n(n-2)}{4} \text { if } n \text { is odd } & \text { (C) } \frac{(n-1)^{2}}{4} \text { if } n \text { is odd }\end{array}$
(D) $\frac{n(n-2)}{4}$ if n is even
32. Consider the expansion $\left(a_{1}+a_{2}+a_{3}+\ldots \ldots+a_{p}\right)^{n}$ where $n \in N$ and $n \leq p$. The correct statement(s) is/are:
number of different terms in the expansion is ${ }^{n+p+1} \mathrm{C}$
co-efficient of any term in which none of the variables ${ }^{n} a_{1,}, a_{2} \ldots, a_{p}$ occur more than once is ' n '
co-efficient of any term in which none of the variables $a_{1}, a_{2}, \cdots, a_{p}$ occur more than once is n ! if $n=p$
Number of terms in which none of the variables $a_{1}, a_{2}, \ldots, \ldots, a_{p}$ occur more than once is $\binom{p}{n}$.
EXERCISE-5

In a telegraph communication how many words can be communicated by using atmost 5 symbols. (only dot and dash are used as symbols)
2. If all the letters of the word 'AGAIN' are arranged in all possible ways \& put in dictionary order, what is the $50^{\text {th }}$ 3.

A committee of 6 is to be chosen from 10 persons with the condition that if a particular person ' A ' is chosen, then
4. another particular person B must be chosen.
5. The sides $A B, B C \& C A$ of a triangle $A B C$ have $3,4 \& 5$ interior points respectively on them. Find the number of 6. triangles that can be constructed using these interior points as vertices.
7. In be used atmost one. In how many other ways can the letters of the word MUUTIPLE be arranged; ; (i) without changing the order of the
vowels (ii) keeping the position of each vowel fixed (iii) without changing the relative order/position of vowels \& consonants.
8. There are p intermediate stations on a railway line from one terminus to another. In how many ways can a train stop at 3 of these intermediate stations if no 2 of these stopping stations are to be consecutive?
9. Find the number of positive integral solutions of $x+y+z+w=20$ under the following conditions:
(i) Zero values of x, y, z, w are include (ii) Zero values are excluded
(iii) No variable may exceed 10; Zero values excluded (iv) Each variable is an odd number
(v) x, y, z, w have different values (zero excluded).
10. Find the number of words each consisting of 3 consonants \& 3 vowels that can be formed from the letters of the word "CIRCUMFERENCE". In how many of these C's will be together.
11. If ' n ' distinct things are arranged in a circle, show that the number of ways of selecting three of these things so that no two of them are next to each other is, $\frac{1}{6} n(n-4)(n-5)$.

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com

12. In maths paper there is a question on "Match the column" in which column A contains 6 entries \& each entry of column A corresponds to exactly one of the 6 entries given in column B written randomly. 2 marks are awarded for each correct matching \& 1 mark is deducted from each incorrect matching. A student having no subjective knowledge decides to match all the 6 entries randomly. Find the number of ways in which he can answer, to get atleast 25% marks in this question.
13. Show that the number of combinations of n letters together out of $3 n$ letters of which n are a and n are b and the rest unlike is, $(n+2) .2^{n-1}$.
14. Find the number of positive integral solutions of, (i) $x^{2}-y^{2}=352706$ (ii) $x y z=21600$
15. There are ' n ' straight line in a plane, no two of which are parallel and no three pass through the same point. Their points of intersection are joined. Show that the number of fresh lines thus introduced is, $\frac{1}{8} n(n-1)(n-2)(n-3)$.
16. A forecast is to be made of the results of five cricket matches, each of which can be a win or a draw or a loss for Indian team. Find
(i) number of forecasts with exactly 1 error
(iii) number of forecasts with all five errors
(ii) number of forecasts with exactly 3 errors
17. Prove by permutation or otherwise $\frac{\left(n^{2}\right)!}{(n!)^{n}}$ is an integer $\left(n \in I^{+}\right)$.
[IIT - 2004]
18. If total number of runs scored in n matches is $\left(\frac{n+1}{4}\right)\left(2^{n+1}-n-2\right)$ where $n>1$, and the rund scored in the $k^{\text {th }}$ match are given by k. 2^{n+1-k}, where $1 \leq k \leq n$. Find n
[IIT - 2005]

EXERCISE-1

Q. $1 \quad{ }^{m+n+k} C_{3}-\left({ }^{m} C_{3}+{ }^{n} C_{3}+{ }^{k} C_{3}\right)$
Q. 44316527
Q. 543200
Q. 2744
Q. 313,156
Q. 6145
Q. 7420
Q. 8960
Q. $9{ }^{24} \mathrm{C}_{2} \cdot{ }^{15} \mathrm{C}_{3}$
Q. 101106
Q. 11 12!; $; \frac{11!.4!}{(3!)^{4} 2!}$
Q. $13 \frac{52!}{(13!)^{4}} ; \frac{52!}{3!(17!)^{3}}$
Q. 145400
Q. 1822100,52
Q. 192111
Q. $15{ }^{45} \mathrm{C}_{6}$
Q. 171638
Q. 23
(a) $72 ; 78120 ;$ (b) 23
(c) 32
Q. 20576
Q. 21
(a) $5 \cdot(6!)$, (b) $3!\cdot 4!$, (c) 12
Q. 25440
Q. $26{ }^{\mathrm{n}+5} \mathrm{C}_{5}$
Q. 273888

Q. 29
(ii) 792 ;
(iii) $\frac{143}{4025}$
(v) $r=3$

EXERCISE-2

Q. 12500
Q. $2 \quad{ }^{\mathrm{m}} \mathrm{C}_{\mathrm{k}-1}$ where $\mathrm{m}=(1 / 2)\left(2 \mathrm{n}-\mathrm{k}^{2}+\mathrm{k}-2\right)$
Q. 6
(i) 15 , (ii) 126 , (iii) 60 , (iv) 105

Q. 7	26250	Q. 9	$120,216,210$	Q. 10	225

Q. 11 (i) 150 ; (ii) 6 ; (iii) 25 ; (iv) 2 ; (v) 6
Q. 12
(i) 3359
(ii) 59 ; (iii) 359
Q. 13 61,75
Q. 17510
Q. 14 10, 3
Q. 18 2!3!8!
Q. $20 \frac{(25)!}{(3!)^{3}(4!)^{4} .4}$
Q. 21 4.(4!) ${ }^{2} \cdot{ }^{8} \mathrm{C}_{4} \cdot{ }^{6} \mathrm{C}_{2}$
Q. $13!)^{2}(2!)^{5} ;{ }^{8} C_{1} \cdot \overline{(3!)^{2}(2!)}$
Q. $23 \quad 3119976 \quad$ Q. 2427
Q. 25 (a) 1680;
(b) 1140
Q. $26 \quad{ }^{6} C_{3}\left[3^{n}-{ }^{3} C_{1}\left(2^{n}-2\right)-{ }^{3} C_{2}\right] \quad$ Q. $27 \quad 974$
Q. 291506

EXERCISE-3

Q. $1 \quad 72$
Q. 2
(i) A ;
(ii) B
Q. 3
Q. 4 B
Q. 5 A
Q. 6 B
Q. 8 C
Q. 9 C

1. A 2. C 3. D
2. D
3. D
4. C
5. D
6. D
7.

C
10. C
11. B
12. D 13. D 14. D
15. A
16. A
17. C
18. B
19. B
20.
$27 . C D$
28. $A B$ 29. $A B C$
21. C
22. C
23. BCD
24. $C D$
25. AB
26. AD
27.
30. $A D$
31. $C D$

EXERCISE-5

1. 62
2. NAAIG
3. 154
4. $(2 n)!m!(m-1)$
5. 205
6. 744
7. (i) 3359
(ii) 59 (iii) 359
8. ${ }^{p-2} \mathrm{C}_{3}$
9. (i) ${ }^{23} \mathrm{C}_{3}$ (ii) ${ }^{19} \mathrm{C}_{3}$
(iii) ${ }^{19} \mathrm{C}_{3}-4 .{ }^{9} \mathrm{C}_{3}$
(iv) ${ }^{11} \mathrm{C}_{8}$ (v) 552
10.22100, 5212.56 ways
10. (i) Zero
(ii) 1260
11. (i) 10
(ii) 80 (iii) 32
12. 7
