${ }^{\circledR}$ enJoy mathematics WITH SUHAAG SIR
"विध्न विचारत भीरू जन, नहीं आरम्भे काम, विपति देख छोड़े तुरंत मध्यम मन कर श्याम । पुरूष सिंह संकल्प कर, सहते विपति अनेक, 'बना’ न छोड़े ध्येय को, रघुबर राखे टेक ॥"

रचितः मानव धर्म प्रणेता
सद्गुरू श्री रणछोड़दासजी महाराज

SOLUTION OF IIT JEE - 2010 BY SUHAAG SIR

HIS STUDENTS OF CLASS MOVING FROM $111^{T H}$ TO $12^{\text {TH }}$

S.No.	Student's Name	School
1	Syd. Almas Ali	All Saints'School
2	Anmol Rehani	Vikram Hr. Sec.
3	Devashish Saxena	St. Mary's Sr. Sec.
4	Mujahid Mohd. Khan	All Saints' School
5	Shahrukh Ahmed	People's Public School
6	Sparsh Mehta	People's Public School
7	Geet Soni	Jawahar Lal Nehru
8	Amit Sarathe	K.V. - 3
9	Ranjeet Singh	Peragatisheel School
10	Rahul Jharwade	People's Public School
11	Anamika Singh	K.V. - 2
12	Shailja Aouthanere	People's Public School
13	Yamini Jain	Chavara Vidya Bhawan Mandideep
14	Kirti Chopariya	Bourbon School

Results of year 2009--15 IIT \& 37 AIEEE selections ont of 70 Fresh students

Solution of IIT JEE 2010 is also available on website :
www.tekoclasses.com OR come to our Institute
(R)

ENJOY MATHEMATICS
WITH SUHAAG SIR

MATHEMATICS PAPER - 2 SECTION - 1
 Single Correct Choice Type

Question sequence as per
Paper CODE - 1

This section contains 8 multiple choice question. Each question has 4 choices A), B), C) and D) for its answer, out of which ONLY ONE is correct.
20. Two adjacent sides of a parallelogram ABCD are given by $\overrightarrow{\mathrm{AB}}=2 \hat{i}+10 \hat{j}+11 \hat{k}$ and $\overrightarrow{\mathrm{AD}}=-\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}$ The side AD is rotated by an acute angle α in plane of the parallelogram so that $A D$ becomes $A D^{\prime}$. If $A D^{\prime}$ makes a right angle with the side $A B$, then the cosine of the angle α is given by
(a) $\frac{8}{9}$
(b) $\frac{\sqrt{17}}{9}$
(c). $\frac{1}{9}$
(d) $\frac{4 \sqrt{5}}{9}$
21. A sinnal which can be green or red with probability $\frac{4}{5}$ and $\frac{1}{5}$ respectively, is received by station A then transmitted to station B. The probability of each station receiving the signal received at station B is green, then the probability that the original signal was green is
(a) $\frac{3}{5}$
(b) $\frac{6}{7}$
(c) $\frac{20}{23}$
(d) $\frac{9}{20}$
22. If the distance of the point $P 1,-2,1$ from the plane $x+2 y-2 z=\alpha$, where $\alpha>0$, is 5 , then the foot of the perpendicular from P to the plane is
(a) $\left(\frac{8}{3}, \frac{4}{3},-\frac{7}{3}\right)$
(b) $\left(\frac{4}{3},-\frac{4}{3}, \frac{1}{3}\right)$
(c) $\left(\frac{1}{3}, \frac{2}{3}, \frac{10}{3}\right)$
(d) $\left(\frac{2}{3},-\frac{1}{3}, \frac{5}{2}\right)$
23. Let f be a real - valued function defined on the interval on the interval $-1,1$ such that $e^{-x} f(x)=2+\int_{0}^{x} \sqrt{t^{4}+1} d t$, for all $x \in-1,1$, and let f^{-1} be the inverse function of f. Then f^{-1} '(2) is equal to
(a) 1
(b)
(c) $\frac{1}{2}$
(d) $\frac{1}{\mathrm{e}}$
24. For $r=0,1 \ldots \ldots .10$, let A_{r}, B_{r} and C_{r} denote, respectively, the coefficient of x^{r} in the expansions of $1+\left.x\right|^{10}, 1+x{ }^{20}$ and $1+x^{30}$. Then $\sum_{r=1}^{10} A_{r} B_{10} B_{r}-C_{10} A_{r}$ is equal to
(a) $\mathrm{B}_{10}-\mathrm{C}_{10}$
(b) $\mathrm{A}_{10} \mathrm{~B}_{10}^{2}-\mathrm{C}_{10} \mathrm{~A}_{10}$
(c) 0
(d) $\mathrm{C}_{10}-\mathrm{B}_{10}$
25. Let $S=1,2,3,4$. The total number of unordered pairs of disjoint subsets of S is equal to
(a) 25
(B) 34
(c) 42
(d) 41

SECTION - II

(Integer Type)
This Section contains 5 questions. The answer to each question is a single-digit integer, ranging from 0 to 9 . The correct digit below the question no. in the ORS is to be bubbled.
26. Let k be a positive real number and let

ENJOY MATHEMATICS
WITH SUHAAG SIR
IIT-JEE, AIEEE (WITH 12 ${ }^{\text {TH }}, 11^{\text {TH }}$ \& DROPPER)

$$
\mathrm{A}=\left[\begin{array}{ccc}
2 \mathrm{k}-1 & 2 \sqrt{\mathrm{k}} & 2 \sqrt{\mathrm{k}} \\
2 \sqrt{\mathrm{k}} & 1 & -2 \mathrm{k} \\
-2 \sqrt{\mathrm{k}} & 2 \mathrm{k} & -1
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
0 & 2 \mathrm{k}-1 & \sqrt{\mathrm{k}} \\
1-2 \mathrm{k} & 0 & 2 \sqrt{\mathrm{k}} \\
-\sqrt{\mathrm{k}} & -2 \sqrt{\mathrm{k}} & 0
\end{array}\right]
$$

If $\operatorname{det}(\operatorname{adj} \mathrm{A})+\operatorname{det}(\operatorname{adj} \mathrm{B})=10^{6}$, then $[\mathrm{k}]$ is equal to
[NOTE : adj M denotes the adjoint of a square matrix M and $[\mathrm{k}]$ denotes the largest integer less then or equal to k].
27. Two parallel chords of a circle of radius 2 are at a distance $\sqrt{3}+1$ apart. If the chords subtend at the center, angles of $\frac{\pi}{\mathrm{k}}$ and $\frac{2 \pi}{\mathrm{k}}$, where $\mathrm{k}>0$, then the value of $[\mathrm{k}]$ is
[NOTE: [k] denotes the largest integer less than or equal to k]
28. Consider a triangle ABC and let a, b and c denote the lengths of the sides opposite to vertices A, B and C respectively. Suppose $a=6, b=10$ and the area of the triangle is $15 \sqrt{3}$. If $\angle A C B$ is obtuse and if r denotes the radius of the incircle of the triangle, then r^{2} is equal to
29. Let f be a function defined on R (the set of all real numbers) such that $f(x)=2010 x-2009 x-2010^{2} x-2011^{3} x-2012^{4}$, for all $x \in R$.
If g is a function defined on R with values in the interval $0, \infty$ such that $f(x)=\ell n(x)$, for all $x \in R$. then the number of points in R at which g has a local maximum is
30. Let $a_{1}, a_{2}, a_{3}, \ldots, a_{11}$ be real numbers satisfying $a_{1}=15,27-2 a_{2}>0$ and $a_{k}=2 a_{k-1}-a_{k-2}$ for $k=3,4, \ldots .11$. If $\frac{a_{1}^{2}=a_{2}^{2}+\ldots+a_{11}^{2}}{11}=90$, then the value fo $\frac{a_{1}+a_{2}+\ldots+a_{11}}{11}$ is equal to SECTION - III

Paragraph Type

This section contains 2 paragraphs. Based upon each of the paragraphs $\mathbf{3}$ multiple choice questions have to be answered. Each of these question has four choices A), B), C) and D) out of which ONLY ONE is correct.

Paragraph for questions 31 to 33.

Tangents are drawn from the point $P(3,4)$ to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ touching the ellipse at points A and B .
31. The coordinates of A and B are
A) $(3,0)$ and $(0,2)$
B) $\left(-\frac{8}{5}, \frac{2 \sqrt{161}}{15}\right)$ and $\left(-\frac{9}{5}, \frac{8}{5}\right)$
C) $\left(-\frac{8}{5}, \frac{2 \sqrt{161}}{15}\right)$ and 0,2
D) 3,0 and $\left(-\frac{9}{8}, \frac{8}{5}\right)$
32. The orthocenter of the triangle PAB is
A) $\left(5, \frac{8}{7}\right)$
B) $\left(\frac{7}{5}, \frac{25}{8}\right)$
C) $\left(\frac{11}{5}, \frac{8}{5}\right)$
D) $\left(\frac{8}{25}, \frac{7}{5}\right)$
33. The equation of the locus of the point whose distances from the point P and the line AB are equal, is
(18)

ENJOY MATHEMATICS
WITH SUHAAG SIR
A) $9 x^{2}+y^{2}-6 x y-54 x-62 y+241=0$
B) $x^{2}+9 y^{2}+6 x y-54 x-62 y-241=0$
C) $9 x^{2}+9 y^{2}-6 x y-54 x-62 y-241=0$
D) $x^{2}+y^{2}-2 x y+27 x+31 y-120=0$

Paragraph for question 34 to 36.

Consider the polynomial $f x=1+2 x+3 x^{2}+4 x^{3}$. Let s be the sum of all distinct real roots of $f x$ and let $t=|s|$.
34. The real number of s lies in the interval
A) $\left(-\frac{1}{4}, 0\right)$
B) $\left(-11,-\frac{3}{4}\right)$
C) $\left(-\frac{3}{4},-\frac{1}{2}\right)$
D) $\left(0, \frac{1}{4}\right)$
35. The area bounded by the curve $y=f x$ and the lines $x=0, y=0$ and $x=t$, lies in the interval
A) $\left(\frac{3}{4}, 3\right)$
B) $\left(\frac{21}{64}, \frac{11}{16}\right)$
C) 9,10
D) $\left(0, \frac{21}{64}\right)$
36. The function $f^{\prime} x$ is
A) increasing in $\left(-t,-\frac{1}{4}\right)$ and decreasing in $\left(-\frac{1}{4}, t\right)$
B) decreasing in $\left(-t,-\frac{1}{4}\right)$ and increasing in $\left(-\frac{1}{4}, t\right)$
C) increasing in $-t, t \quad$ D) decreasing in $-t, t$

SECTION - IV

(Matrix Type)
This Section contains 2 question. Each question has four statements (A, B, C and D) given in Column I and five statements (p, q, r, s and t) in Column II. Any given statement in Column I can have correct matching with one or more statement(s) given in Column II. For example, if for a given question, statement B matches with the statements given in q and r, then for that particular question, against statement B, darken the bubbles corresponding to q and r in the ORS.
37. Match the statements in Column - I with the values in Column - II

Column I
A. A line from the origin meets the lines

Column II
P. -4
$\frac{x-2}{1}=\frac{y-1}{-2}=\frac{z+1}{1}$ and $\frac{x-\frac{8}{3}}{2}=\frac{y+3}{-1}=\frac{z-1}{1}$ at P and Q respectively. If
length $P Q=d$, then d^{2} is
B. The values of x satisfying $\tan ^{-1} x+3-\tan ^{-1} x-3=\sin ^{-1}\left(\frac{3}{5}\right)$ are
Q. 0
C. Non-zero vectors $\vec{a}, \vec{b}, \vec{c}$ satisfy $\vec{a} \cdot \vec{b}=0, \quad \vec{b}-\vec{a} \cdot \vec{b}+\vec{c}=0 \quad$ and R. 0 $2|\vec{b}+\vec{c}|=|\vec{b}-\vec{a}|$. If $\vec{a}=\mu \vec{b}+4 \vec{c}$, then the possible values of μ are

ENJOY MATHEMATICS
WITH SUHAAG SIR
D. Let f be the function on $-\pi, \pi$ given by $\mathrm{f} 0=9$ and S. 5
$f(x)=\sin \left(\frac{9 x}{2}\right) / \sin \left(\frac{x}{2}\right)$ for $x \neq 0$. The value of $\frac{2}{\pi} \int_{-\pi}^{\pi} f(x) d x$ is

T. 6

38. Match the statements in Column-I with those in Column-II. [Note : Here z takes values in the complex plane and $\operatorname{Im} z$ and $\operatorname{Re} z$ denote, respectively, the imaginary part and the real part of z .] Column I
A. The set of points z satisfying $|z-i| z||z+i| z|$ is contained in or equal to

Column II

B. The set of points z satisfying Q. the st of points z satisfying $\operatorname{Im} z=0$ $|z+4|+|z-4|=10$ is contained in or equal to
C. If $|w|=2$, then the set of points $z=w-\frac{1}{w}$ R. the set of points z satisfying $|\operatorname{Im} z| \leq 1$ is contained in or equal to
D. If $|w|=1$. then the set of points $z=w+\frac{1}{w} \quad$ S. the set of points z satisfying $|\operatorname{Re} z| \leq 2$ is contained in or equal to
T. the set of points z satisfying $|z| \leq 3$

SOLUTION - IIT JEE 2010 (PAPER - 2)

20. (B)
B) $\cos \theta=\frac{-2+20+22}{\sqrt{1+4+4} \sqrt{4+100+121}} \Rightarrow \cos \theta=\frac{8}{9}$
$81-64=17$

21. (C) Event $G=$ original signal is green, $E_{1}=A$ receives the signal correct, $E_{2}=B$ receives the signal correct, $\mathrm{E}=$ signal received by B is green, P (signal received by B is green) $=P\left(G E_{1} E_{2}\right)+P\left(G \bar{E}_{1} \bar{E}_{2}\right)+P \quad \bar{G}_{1} E_{2} P(E)=\frac{46}{5 \times 16}, P(G / E)=\frac{40 / 5 \times 16}{46 / 5 \times 16}=\frac{20}{23}$.
22. (A) Let PN be normal to plane. $|\mathrm{PN}|=\left|\frac{1-4-2-\alpha}{\sqrt{1^{2}+2^{2}+2^{1}}}\right|, \quad 5=\left|\frac{-5-\alpha}{3}\right| \pm 5 \times 3=-5-\alpha$
$\alpha=-5 \pm 15 \Rightarrow \alpha=+10$ or -15 (cancle) plane $x+2 y-2 z=10$ Now check all option only A will satisfy the plane.

ENJOY MATHEMATICS
WITH SUHAAG SIR
IIT-JEE, AIEEE (WITH 12 ${ }^{\text {TH }}, 11^{\text {th }} \&$ DROPPER)
23. Diff. $E q e^{-x} f^{\prime}(x)-e^{x} f(x)=\sqrt{x^{4}+1}$ Put $x=01 . f^{\prime}(0)-1 . f(0)=\sqrt{0+1}$ (form equation. 1) $f^{\prime}(0)-2=1, f^{\prime}(0)=3 \quad$ if $\quad g(x) \quad$ is $\quad f^{-1}(x), \quad$ so $\quad g^{-1}(x) \quad$ is $\quad f(x), \quad g^{-1}(x)=f(x), x=g(f(x))$ $, 1=g^{\prime}(f(x)) . f^{\prime}(x) \frac{1}{f^{\prime}(x)}=g^{\prime}(f(x)), x=0 \rightarrow f(0)=2 \ldots \ldots(1) \frac{1}{f^{\prime}(0)}=g^{\prime}(f(0)) \Rightarrow \frac{1}{3}=g^{\prime}(2)$.
24. (D) Here we are applying INDUCTION CONCEPT GIVEN BY SUHAAG SIR so here we can't print it.
25. Total No. of subsets $=2^{n}$, Here $n=4$ therefore total sets $=16$
$1,2,3,4,1,2,2,3,3,4,4,1,2,4,1,3$
$1,2,3,2,3,4,3,4,1,2,4,1,1,2,3,4 \quad \phi$

Set	its disjoints	Set	its disjoints
1	8	2,4	1
2	7	1,3	2
3	6	$1,2,3$	1
4	5	$2,3,4$	1
1,2	3	$3,4,1$	1
2,3	2	$2,4,1$	1
3,4	1	$1,2,3,4$	1
4,1	1	ϕ	0

Therefore Ans $=$ Total No. of disjoint sets i.e. $=41$
26. (5) $|A|=(2 k+1)^{3},|B|=0$ (since B is a skew - symmetric matrix of order 3$) \Rightarrow \operatorname{det}(\operatorname{adj} A)$

$$
=|A|^{n-1}=2 k+1^{3}=106 \Rightarrow 2 k+1=10 \Rightarrow 2 k=9, k=4 .
$$

27.

$$
\begin{aligned}
& \text { (2) } 2 \cos \frac{\pi}{2 \mathrm{k}}+2 \cos \frac{\pi}{\mathrm{k}}=\sqrt{3}+1, \cos \frac{\pi}{2 \mathrm{k}}+\cos \frac{\pi}{\mathrm{k}}=\frac{\sqrt{3}+1}{2} \quad \text { Let } \frac{\pi}{\mathrm{k}}=0, \cos \theta+\cos \frac{\theta}{2}=\frac{\sqrt{3}+1}{2} \\
& \Rightarrow 2 \cos ^{2} \frac{\theta}{2}-1+\cos \frac{\theta}{2}=\frac{\sqrt{3}+1}{2}, \cos \frac{\theta}{2}=t, 2 \mathrm{t}^{2}+\mathrm{t}-\frac{\sqrt{3}+3}{2}=0, t=\frac{-1 \pm \sqrt{1+43+\sqrt{3}}}{4} \\
& =\frac{-1 \pm 2 \sqrt{3}+1}{4}=\frac{-2-2 \sqrt{3}}{4}, \frac{\sqrt{3}}{2} \because t-1,1, \cos \frac{\theta}{2}=\frac{\sqrt{3}}{2}, \frac{\theta}{2}=\frac{\pi}{6} \Rightarrow k=3 .
\end{aligned}
$$

28. (3)

$$
\Delta=\frac{1}{2} a b \sin C \Rightarrow \sin C=\frac{2 \Delta}{a b}=\frac{2 \times 15 \sqrt{3}}{6 \times 10}=\frac{\sqrt{3}}{2} \Rightarrow C=120^{\circ} \Rightarrow c=\sqrt{a^{2}+b^{2}-2 a b \cos C}
$$

$$
=\sqrt{6^{2}+10^{2}-2 \times 6 \times 10 \times \cos 120^{\circ}}=14 \quad \therefore r=\frac{\Delta}{s} \Rightarrow r^{2}=\frac{225 \times 3}{\left(\frac{6+10+14}{}\right)^{2}}=3
$$

29. (1) $f(x)=\ln g(x), g(x)=e^{f(x)}, f^{\prime}(x)=e^{f(x)} f^{\prime}(x), g^{\prime}(x)=0 \Rightarrow f^{\prime}(x)=0 \quad$ as $\quad e^{f(x)} \neq 0$ $\Rightarrow 2010(x-2009)^{2}(x-2011)^{3}(x-2012)^{4}=0$ so there is only one point of local maxima.

ENJOY MATHEMATICS
WITH SUHAAG SIR
30. Ans (0) This series is A.P. so $\mathrm{a}=15$ and $2^{\text {nd }}$ term is $\mathrm{a}+\mathrm{d}$, given $27-2(a+d)>0,27-2(15+d)>0,27-30-2 d>0,-3-2 d>0,-3>2 d .,-\frac{3}{2}>d$. so acceding to condition of question d must be -3 so now check answer will be 0 .
31. (D) Coordinate of point P 3, 4 equation of tangency $\frac{x \cdot x_{1}}{9}+\frac{y \cdot y_{1}}{4}=1 \Rightarrow \frac{x}{3}+y=1, x+3 y=3$ Because the points $(3,0)$ and $\left(-\frac{9}{5}, \frac{8}{5}\right)$ satisfies the above equation hence the answer is (D) Ans (D) OR II METHOD
(D) By using Suhaag Short Trick 1. They satisfy the given equation according to the graph $(3,4)$

Ans (D)
(C) Slope $\frac{\frac{8}{5}-0}{\frac{-9}{5}-3}=\frac{-1}{3}$
$y-4=3 x-3 \Rightarrow y-4=3 x-9 \Rightarrow 3 x-y-5=0$
$y-0=-2 x-3 \Rightarrow y=-2 x+6$
$3 x-y=5$
$2 x+y=6$
$5 x=11 \Rightarrow x=\frac{11}{5}$ By putting the value of x in eq. (1)
$3\left(\frac{11}{5}\right)-y=5 \Rightarrow y=\frac{8}{5} \Rightarrow \operatorname{Ans}\left(\frac{11}{5}, \frac{8}{5}\right)$

32.

OR II METHOD (C) By using Suhaag Short Trick According to the figure given above $\left(\frac{11}{5}, \frac{8}{5}\right) \Rightarrow 2.2,1.6$
33. (A) Locus is parabola Equation of $A B$ is $\frac{3 x}{9}+\frac{4 y}{4}=1 \Rightarrow \frac{x}{3}+y=1 \Rightarrow x+4 y-3=0$ $x-3^{2}+y-4^{2}=\frac{x+3 y-3^{2}}{10}$,
$10 x^{2}+90-60 x+10 y^{2}+160-80 y=x^{2}+9 y^{2}+9+6 x y-6 x-18 y$
$\Rightarrow 9 x^{2}+v^{2}-6 x y-54 x-62 y+241=0$.
34. (C) Since $f\left(-\frac{1}{2}\right) \cdot f\left(-\frac{3}{4}\right)<0 \Rightarrow S$ lie in $\left(-\frac{3}{4},-\frac{1}{2}\right)$.
35. (A) $-\frac{3}{4}<\mathrm{s}<-\frac{1}{2}, \frac{1}{2}<\mathrm{t}<\frac{3}{4}, \int_{0}^{1 / 2} 4 \mathrm{x}^{3}+3 \mathrm{x}^{2}+2 \mathrm{x}+1 \mathrm{dx}<\operatorname{area}<\int_{0}^{3 / 4} 4 \mathrm{x}^{3}+3 \mathrm{x}^{2}+2 \mathrm{x}+1 \mathrm{dx}$
$\left[x^{4}+x^{3}+x^{2}+x\right]_{0}^{1 / 2}<\operatorname{area}>\left[x^{4}+x^{3}+x^{2}+x\right]_{0}^{3 / 4}$
,$\frac{1}{16}+\frac{1}{8}+\frac{1}{4}+\frac{1}{2}<$ area $>\frac{81}{256}+\frac{27}{64}+\frac{9}{16}+\frac{3}{4}, \frac{15}{16}<$ area $<\frac{525}{256}$.

ENJOY MATHEMATICS
WITH SUHAAG SIR
36. (B) $f^{\prime}(x)=212 x+3=0 \Rightarrow x=-1 / 4$.
37. (A) - (T) Let the line be $\frac{x}{a}=\frac{y}{b}=\frac{z}{c}$ intersects the lines $\Rightarrow S \cdot D=0 \Rightarrow a+3 b+5 c=0$ and $3 a+b-5 c=0 \Rightarrow a: b: c:: 5 r:-5 r: 2 r$
(B) $-(\mathrm{P} \& \mathrm{R}) \quad \tan ^{-1}(\mathrm{x}+3)-\tan ^{-1}(\mathrm{x}-3)=\sin ^{-1}(3 / 5)$
$\Rightarrow \tan ^{-1} \frac{x+3-x-3}{1+x^{2}-9}=\tan ^{-1} \frac{3}{4} \Rightarrow \frac{6}{x^{2}-8}=\frac{3}{4} \therefore x^{2}-8=8$ or $x= \pm 4$.
(C) $-(\mathrm{Q}, \mathrm{S})$ As $\overrightarrow{\mathrm{a}}=\mu \overrightarrow{\mathrm{b}}+4 \overrightarrow{\mathrm{c}} \Rightarrow \mu|\overrightarrow{\mathrm{b}}|=-4 \overrightarrow{\mathrm{~b}} \cdot \overrightarrow{\mathrm{c}}$ and $|\overrightarrow{\mathrm{b}}|^{2}=4 \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}$ and $|\overrightarrow{\mathrm{b}}|^{2}+\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{d}} \cdot \overrightarrow{\mathrm{c}}=0 \quad$ Again, as $2|\vec{b}+\vec{c}|=|\vec{b}-\vec{a}|$ solve and eliminating $\vec{b} \cdot \vec{c}$ and eliminating $|\vec{a}|^{2}$ we get $2 \mu^{2}-10 \mu|\vec{b}|^{2}=0 \Rightarrow \mu=0$ and 5 .
(D) - (R) $I=\frac{2}{\pi} \int_{-\pi}^{\pi} \frac{\sin 9 x / 2}{\sin x / 2} d x=\frac{2}{\pi} \times 2 \int_{0}^{\pi} \frac{\sin 9 x / 2}{\sin x / 2} d x, x / 2=\theta \Rightarrow d x=2 d \theta, x=0, \theta=0$
$\mathrm{x}=\pi \theta=\pi / 2 \mathrm{I}=\frac{8}{\pi} \int_{0}^{\pi / 2} \frac{\sin 9 \theta}{\sin \theta} \mathrm{~d} \theta=\frac{8}{\pi} \int \frac{\sin 9 \theta-\sin 7 \theta}{\sin \theta}+\frac{\sin 7 \theta-\sin 5 \theta}{\sin \theta}+\frac{\sin 3 \theta-\sin \theta}{\sin \theta}+\frac{\sin \theta}{\sin \theta} \mathrm{d} \theta$
$=\frac{16}{\pi} \int_{0}^{\pi / 2} \cos 8 \theta+\cos 6 \theta+\cos 4 \theta+\cos 2 \theta+1 d \theta+\frac{8}{\pi} \int_{0}^{\pi / 2} d \theta=\frac{16}{\pi}\left[\frac{\sin 8 \theta}{8}+\frac{\sin 6 \theta}{6}+\frac{\sin 4 \theta}{4}+\frac{\sin 2 \theta}{2}\right]$ $+\frac{8}{\pi} \theta_{0}^{\pi / 2}=0+\frac{8}{\pi} \times\left[\frac{\pi}{2}-0\right]=4$
38. (A) - (Q) $\left|\frac{z}{|z|}-1\right|=\left|\frac{z}{|z|}+1\right|, z \neq 0, \frac{z}{|z|}$ is unimodular complex number and lies on perpendicular bisector of I and $-i \Rightarrow \frac{z}{|z|}+ \pm 1 \Rightarrow z= \pm 1|z| \Rightarrow A$ is real number $\Rightarrow \operatorname{Im}(z)=0$.
(B) - (P) $|z+4|+|z-4|=10 \quad z$ lies on an ellipse whose focus are $(4,0)$ and $(-4,0)$ and length of major axis is $10 \Rightarrow 2 a e=8$ and $2 a=10 \Rightarrow e=4 / 5|\operatorname{Re}(z)| \leq 5$.
(C) - (P,T) $|w|=2 \Rightarrow w=2 \cos \theta+i \sin \theta, x+i y=2 \cos \theta+i \sin \theta=-\frac{1}{2} \cos \theta-i \sin \theta$

$$
=\frac{3}{2} \cos \theta+i \frac{5}{2} \sin \theta \Rightarrow \frac{x^{3}}{3 / 2^{2}}+\frac{y^{2}}{5 / 2^{2}}=1, e^{2}=1-\frac{9 / 4}{25 / 4}=1-\frac{9}{25}=\frac{16}{25} \Rightarrow e=\frac{4}{5} .
$$

(D)

$$
\begin{equation*}
|w|=1 \Rightarrow x+i y+\cos +i \sin \theta+\cos \theta-i \sin \theta, x+i y=2 \cos \theta|\operatorname{Re}(z)| \leq 1,|\operatorname{lm}(z)|=0 . \tag{Q,T}
\end{equation*}
$$

